
Bootstrapping the next generation of

mathematical social machines

Ursula Martin∗, Alison Pease, Joseph Corneli
Oxford University, University of Dundee, University of Edinburgh

Abstract

Tim Berners-Lee defines social machines to be a class of systems “in
which the people do the creative work and the machine does the admin-
istration.” Here, we note that the ansatz in computational creativity –
a subfield of artificial intelligence – is that, in the future if not already,
computational systems and agents will also contribute directly to creative
work. But it can be presumed that we will use standard social machines
to develop the next generation ‘target’ systems, whatever they may be.

The domain of mathematics is a particularly interesting and practical
place to explore a range of issues in AI and other aspects of computing.
Contemporary mathematical practice intersects several areas of comput-
ing practice and theory, ranging from computer-mediated communication
to formal computational modelling of mathematical argument.

We ask: How will we use the various existing social machines to boot-
strap the next edition? How can the idea of programming languages help?

Bryan Birch, Professor Emeritus at the Oxford Mathematical Institute, is
credited with the off-handed remark that he programmed in a very high-level
programming language called ‘graduate student’.1

This anecdote is a schematic match to David Murray-Rust and David Robert-
son’s [3] idea of bootstrapping social machines. These authors partition the
overall information ecosystem into ‘development’ and ‘target’ machines. For
example, a certain set of tools and collaboration strategies went into building
the first version of Mediawiki and creating the first few articles in Wikipedia.
With this system, one of the world’s most popular websites was bootstrapped.

Tim Berners-Lee [2] defines social machines to be a class of systems “in which
the people do the creative work and the machine does the administration.”
The ansatz of computational creativity is that, in the future if not already,
computational systems and agents will also contribute directly to creative work.
(These days, more edits to Wikipedia are made by bots than by people.)

The domain of mathematics is a particularly interesting – and practical –
place to explore a range of issues in AI and other branches of computing. Many

∗Corresponding author, Ursula.Martin@cs.ox.ac.uk
1http://mathoverflow.net/questions/11084/what-programming-languages-do-

mathematicians-use

1



mathematicians engage in computer-mediated communication – via email, blogs,
wiki, Q&A sites, etc. They use and create digital libraries, also, to an increasing
extent – as traces of these communications, and resulting publications, are stored
for later use. Computer algebra and other branches of symbolic computing
have given rise to their own programming languages, like those developed by
Wolfram Research. Theorem proving, after several decades largely within the
ægis of computer science, is currently finding an archipelago of use cases within
mainstream mathematics. And since its days of origin, mathematics has been
closely tied to argumentation: argumentation theory is increasingly capable of
modelling the way people do mainstream mathematics.

The next generation of mathematical social machines will need to be conver-
sant with the core ideas in these several modes of engagement. They will also –
fundamentally – need to be conversant with the language of mathematics. We
have been developing a new strategy for representing mathematical discussions,
in which ‘The Cayley graph of group G’ becomes an object in its own right;
the relationship between the proposition P and the proposition ‘P is difficult
to prove’ is made explicit; and in which Lakatos-style conjectures, refutations,
and repair are modelled. A range of mathematical predicates like stronger,
not, equivalent, weaker, has_property, and case_split are supported, along
with meta-level predicates like goal, strategy, and auxiliary – which are used
for guiding proofs. Value judgements such as easy, plausible, beautiful,
and useful, along with performatives like agree, assert, challenge, define,
query, retract, and suggest round out this proto-language.

We envision extensions to this lexicon that cover the technical (social me-
chanical) aspects of mathematical dialogues, surveyed above, with robust in-
terfaces to contemporary social machines (like Wikidata, MathOverflow, etc.).
Related work in the programming language literature includes the language Dog
[1], which was designed to make it easy to coordinate online services. Service
oriented architecture (SOA), in which some responsibility for service assembly
is handed over to the computer, is also relevant. ‘Scope’ and ‘context’ present
particularly interesting challenges. As we imagine was also the case for Birch’s
graduate student, our language wil have to learn – grow, and develop – by doing.

References

[1] Salman Ahmad and Sepandar Kamvar. The Dog Programming Language. In
Shahram Izadi, Aaron Quigley, Ivan Poupyrev, and Takeo Igarashi, editors,
Proc. of the 26th annual ACM symposium on User interface software and
technology, pages 463–472. ACM, 2013.

[2] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The original de-
sign and ultimate destiny of the World Wide Web by its inventor. Harper
Information, 2000.

[3] Dave Murray-Rust and Dave Robertson. Bootstrapping the next generation
of social machines. In Crowdsourcing, pages 53–71. Springer, 2015.

2


