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Abstract

The simulation of mathematical reasoning has been a driving force throughout the his-
tory of Artificial Intelligence research. However, despite significant successes in com-
puter mathematics, computers are not widely used by mathematicians apart from their
quotidian applications. An oft-cited reason for this is that current computational sys-
tems cannot do mathematics in the way that humans do. We draw on two areas in which
Automated Theorem Proving (ATP) is currently unlike human mathematics: firstly in
a focus on soundness, rather than understandability of proof, and secondly in social
aspects. Employing techniques and tools from argumentation to build a framework for
mixed-initiative collaboration, we develop three complementary arcs. In the first arc
— our theoretical model — we interpret the informal logic of mathematical discovery
proposed by Lakatos, a philosopher of mathematics, through the lens of dialogue game
theory and in particular as a dialogue game ranging over structures of argumentation. In
our second arc — our abstraction level — we develop structured arguments, from which
we induce abstract argumentation systems and compute the argumentation semantics
to provide labelings of the acceptability status of each argument. The output from this
stage corresponds to a final, or currently accepted proof artefact, which can be viewed
alongside its historical development. Finally, in the third arc — our computational model
— we show how each of these formal steps is available in implementation. We demon-
strate our approach with a formal, implemented example of real-world mathematical
collaboration. Finally, we offer reflections on our mixed-initiative collaborative ap-
proach.
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1. Introduction

The simulation of mathematical reasoning has been a driving force throughout the his-
tory of Artificial Intelligence research [98, 86, 58, 87]. However, despite significant
successes in ‘computer mathematics’ (e.g., [18, 40, 42, 45]) computers are not widely
used by mathematicians apart from their quotidian applications like running word pro-
cessing tools, email programs, web servers and web browsers, and (sometimes) com-
puter algebra systems. An oft-cited reason for this is that current computational sys-
tems cannot do mathematics in the way that humans do. Despite — or perhaps because
of [69] — their profound rigour, machine proofs are often thought to be unclear, unin-
spiring and untrustworthy, as opposed to human proofs which can be deep, elegant and
explanatory [21, 41]. In order to help to close the gap between machine-constructed
proofs and human-constructed ones, we consider two key areas of focus: informal and
social aspects of proof discovery in the human context. We propose that theories and
tools from the field of argumentation can be used to more closely align Al systems with
the human context in these two areas.

1.1. Informal aspects of proof

Evaluation metrics in the Automated Theorem Proving (ATP) community are focused
on soundness, and the power of a solver to prove a wide selection of difficult problems
with specific resource limits.! Qualities of the resulting proof other than soundness
are rarely considered. This stands at variance with the practices of the mathematical
community, in which a lack of soundness might be forgiven if a proof is interesting
or complex. Indeed, an error in a proof may be neither “perturbing,” nor “surprising,”
if it is judged to be the right sort of error (one which is not critical to the integrity of
the proof) [20].> Instead, one of the main criteria by which a proof is judged in the
human context is its understandability. A well-written proof can provide insight as to
why a theorem may be true, point to new conjectures, form connections between differ-
ent fields and suggest solutions to open problems [44, 75, 106]. Fields medal winners
Gowers and Thurston, respectively, have said: “We like our proofs to be explanations
rather than just formal guarantees of truth” [41, p. 3], and “reliability does not pri-
marily come from mathematicians formally checking formal arguments; it comes from
mathematicians thinking carefully and critically about mathematical ideas” [94, p. 10].
Thurston emphasises that informal conversations between mathematicians can often
convey ideas more quickly and comprehensibly than a written proof [94, p. 6]. Hersch
has suggested that “The standard style of expounding mathematics purges it of the per-
sonal, the controversial, and the tentative, producing a work that acknowledges little
trace of humanity, either in the creators or the consumers” [47, p. 131].

Lakatos offered similar insight into proof-understanding [55]. Building on Pélya’s

T«“wide”, “difficult” and “resources” are all defined appropriately: see, for instance [92].

%Indeed, Aschbacher — one of the main mathematicians involved in the development of the proof of the
Classification of Finite Simple Groups (one of the main achievements of twentieth century mathematics, on
which many other results depend) — commented that “the probability of an error in the [CFSG] proof is one”
[9], related in [20].



distinction between informal, unfinished mathematics-in-the-making and formal, fin-
ished mathematics [76], he argued that a theorem and proof which are presented in
isolation from their development are “artificial and mystifyingly complicated”, anal-
ogous to a “conjuring act” [55, p142]. In order to make results understandable, they
should be presented alongside the “struggle” and “adventure” involved in the story of
their development. This insight is echoed by Ernest, who criticises the practice of pre-
senting mathematics learners with the “sanitized outcomes of mathematical enquiry”:
“The outcome may be elegant texts meant for public consumption, but they also gen-
erate learning obstacles through this reformulation and inversion” [67, p. 67]. Bundy
points out that this practice also obscures understandability for research mathemati-
cians: “Mathematicians find informal proofs more accessible and understandable [than
formal proofs]” [21, p. 2].

In contrast to the concerns about understandability voiced by mathematicians and
philosophers of mathematics, understandability is not traditionally a concern for ATP.
A handful of exceptions have focused on making an existing machine proof more com-
prehensible [29, 30, 36]. MacKenzie [60] has argued that rather than treating machines
as oracles and giving them responsibility for verifying the reliability of both hardware
and software, there needs to be a continued interaction between computer systems and
our collective human judgment: “The finished product of formal verification — the
‘proof object’ — may thus be less important than the process of constructing it.” [61, p.
2348]. Constructing or verifying proofs which are written in a classical logical formal-
ism does not align with mainstream mathematical activity, since proofs are typically
neither constructed nor presented in this way.

Accordingly, our objective to model mathematical dialogues connects closely with
the theory of defeasible argument (reasoning that is rationally compelling but not de-
ductively valid [52]). The structure of classical proof theoretic systems and formal
theorisations of defeasible argument differ [99]. Defeasible argument is used during
the initial construction of a proof, and as the proof is refined or changed over time
to reflect conceptual changes in the underlying theory, or to rectify deductive errors
discovered after a proof is commonly accepted — all themes that Lakatos emphasised
[55]. In practice, we may have an argument whose conclusion states that for all x,
P(x) — Q(x), whose logical validity rests on a particular interpretation of P and Q. In
some cases P or Q might not be clearly defined, and can be subsequently defined in
different ways by different people, sometimes rendering the initial argument invalid.
Whether a consensus ever occurs and whether we could be sure that the consensus is
final, is an open and somewhat contentious question.

We propose that applied argumentation theory can improve the understandability
of output from, and input to, ATP systems, and other computer-mediated, -moderated,
or -motivated proof systems. Doing this will help to close the cultural gap between
human and machine mathematics. One way to go about this is to keep track of informal
proof development, presenting the errors, conflicts and deadends involved, alongside a
finished or current proof artefact.



1.2. The social dimension of human mathematics

The social dimension is typically neglected in automated reasoning, which usually con-
sists of two approaches: autonomous theorem proving, in which a single system proves
theorems, or interactive theorem proving, in which there is one system and one user
interacting with it. New models of working in a social context have gained traction
with the notion of the social machine — a new paradigm identified by Berners-Lee [13]
for viewing a combination of people and computers as a single problem-solving en-
tity. Martin and Pease propose a research agenda for mathematics social machines as
“a combination of people, computers, and mathematical archives to create and apply
mathematics, with the potential to change the way people do mathematics, and to trans-
form the reach, pace, and impact of mathematics research” [63, p. 1] . Epstein outlines
a more general vision of collaborative intelligence, in which she revisits original goals
in Al in the light of its history, successes and failures, and recommends a new form of
synergy between people and computers [34].

These ideas suggest a third approach in automated reasoning — mixed-initiative
proving — in which proof discovery occurs via interaction of multiple participants (both
human and computer) working together towards a common goal. In this paper we build
on these ideas and use techniques from argumentation to provide a way of formalising
social aspects of mixed-initiative proof via dialogue theory.

1.3. Argumentation

The relationship between the study of mathematical practice and argumentation theory
is not well-explored, though has already borne fruit. Toulmin applied his argumentation
structure to Theaetetus’s proof that there are exactly five platonic solids [95]; Aberdein
showed that Toulmin’s structure can represent more complex mathematical proofs [2,
3]; and Alcolea has shown that it can also be used to represent meta-level mathematical
argument, such as axiom adoption or rejection [8]. Krabbe [53], Aberdein [4, 5, 6]
and Aberdein and Pease [72] further demonstrate the application of various theories
of argumentation to mathematical argument. Further related issues are explored in a
recent edited volume [7].

Although theories of argument have been applied within the philosophy of mathe-
matical practice (as above), mathematics presents a largely novel domain of discourse
within the argumentation research community, perhaps due to the misconception that
it represents a deductive style of reasoning, more appropriate to formal proof than ar-
gumentation.

1.4. Aims and contributions

Our main aim is to develop a new approach in which tools and theories from the ar-
gumentation community can be deployed to build a bridge between interactive proof
tools and human mathematicians.

Our main contribution is to identify two areas in which ATP is currently unlike
human mathematics — informal and social aspects — and to employ techniques and tools



from argumentation to build a framework which opens the door to mixed-initiative
collaborative reasoning in mathematics. Specifically, we:

1. Propose and demonstrate a way to make proofs more understandable by draw-
ing on philosophical, sociological and educational literature on mathematics
which highlights the importance of presenting the development of a proof at-
tempt alongside a final, or currently accepted, proof artefact. We develop a
framework in which this aspect is possible. A grounded extension of a dialogue
can be produced, representing a currently accepted, collaboratively constructed,
proof or theory. Since the record of the dialogue can be presented alongside this
proof, the framework delivers the history of a proof attempt as well as the proof
artefact.

2. Propose and demonstrate a way to make collaboration more social by opening
the door to a mixed initiative collaborative mathematics. Social aspects in human
mathematics have been shown to be integral to the human context, therefore tech-
nologies which are able to support mathematicians in the collective construction
of mathematical knowledge, in a variety of ways are essential. In addition to be-
ing able to show the current state of discussion (as discussed above), this includes
highlighting conflicting commitments or unresolved moves, finding similarities
and conflicts across different discussions going on in parallel among otherwise
independent groups of arguers, storing past discussions and making them search-
able, and so on.

3. Develop three complementary arcs:

(a) The first arc comprises our theoretical model. Starting from the philosophi-
cal stance provided by Lakatos [55] in his account of the dialectical, collab-
orative interaction that constitutes the practice of mathematics, we interpret
this through the lens of dialogue game theory [43] and in particular as a di-
alogue game ranging over structures of argumentation.

(b) In the second arc we develop an abstraction level, in which we start with
the argument fragments created via the formal dialogue game and develop
structured arguments, from which we induce abstract argumentation sys-
tems in the style of [32]. The final stage in this arc is to compute the
argumentation semantics, to provide labellings of the acceptability status
of each argument. This paper shows how the labelling derived from the
abstract argumentation framework corresponds precisely to the theory that
has been collaboratively created by the participants in a Lakatosian dia-
logue. Thus the output from this stage corresponds to a final, or currently
accepted proof artefact, which can be viewed alongside its historical devel-
opment.

(c) The third arc comprises our computational model, in which we show how
each of these formal steps is available in implementation. The interpre-
tation of Lakatos as a formal dialogue game can be captured as an imple-
mented specification in the Dialogue Game Description Language (DGDL)
[105]. This specification can be executed by a platform, the Dialogue Game



Execution Platform (DGEP) [15] which offers a series of web services to
clients for executing a participant’s legal moves. Part of the semantics of
the dialogue game specification is to define updates on a shared informa-
tion state [96], in which the language of knowledge representation is AIF,
implemented as a series of web services provided by the AIFdb infrastruc-
ture [57]. The AIF data created as a side effect of the operational semantics
of turn-taking in the dialogue game is interpreted by The Online Argument
Structures Tool (TOAST) [90] as an ASPIC+ system [66] and passed to
DungOMatic [88] to calculate the grounded extension. At each step in the
game, this calculation returns the current state of the co-created mathemat-
ical theory.

4. Demonstrate our approach and the interaction of our three arcs via an imple-
mented example of human mathematical collaboration. This shows how off-the-
shelf technologies can produce a pipeline system, running from natural language
dialogue about the construction of a mathematical proof, to philosophical theory,
to the formal expression of natural language reasoning in dialogue games, and
from there to abstract argumentation and argumentation semantics, and finally,
coming full circle, to show that implementations of these systems can then pro-
vide value back to the mathematical community from which the philosophical
theory was derived.

5. Demonstrate the applicability of argumentation techniques to mathematical rea-
soning.

We further show how the model can be retrospectively applied to examples of extant
mathematical discussion in Appendix A. In so doing, it is not only possible to demon-
strate the depth of Lakatos’s original insight, but also to show that the formal charac-
terisation here remains both honest to the original and of practical utility to mathemati-
cians. By making this connection back to the community of mathematical practice, we
show that the door is opened to mixed-initiative, collaborative mathematics [89, 35].

Prior work on argumentation in artificial intelligence is surveyed in [12] and [11].
Several ‘pipeline’ systems for argument analysis have previously been developed [107,
88], “breaking down argumentation tools into small components, deploying these com-
ponents as web services, then constructing UNIX-style pipelines to link them together
as one large system” [88, p. 1]. The specific ‘pipeline’ detailed in the later sections
of this paper is outlined in Figure 1c. We emphasise logic rather than linguistics, and
thus do not solve the problem of the “knowledge acquisition bottleneck™ highlighted
by Wyner, van Engers, and Hunter [107, p. 21]. Section 8 points to some related recent
work on the linguistics of mathematics that could be useful in widening this bottleneck.
Indeed, there are at least two narrow places in the bottleneck — and the corresponding
research challenges are roughly analogous to the steps “first from the established facts
to intermediate predicates, and then from these intermediate predicates to legal conse-
quences” in legal case-based reasoning [81, p. 17]. The present work is unique in that
it is formal, implemented, and descriptive of real-world mathematical collaboration.

The remainder of the paper is structured as follows: in Sections 2 - 3 we outline
our theoretical model, in which we introduce theoretical foundations and develop a
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Figure 1: The three main developmental arcs discussed in the paper

formal dialogue system from Lakatos’s model of mathematical discourse. In Sections
4 - 5 we present our abstract level, showing how we progress from a formal dialogue
system to Argument Interchange Format structures and then to abstract argumentation
frameworks. In Sections 6 - 7 we present our computational model and example of
collective proof as argumentation. Finally, we present our conclusions in Section 8. A
diagrammatic representation of the paper can be found in Figure 1.

2. Theoretical foundations

In this section we lay down the theoretical foundations necessary for understanding the
rest of the paper. Section 2.1 contains a high-level description of Lakatos’s patterns of
dialogue: this, alongside material in Section 2.3 on specifying dialectical interactions
as a set of rules governing the interaction, will be needed to understand our develop-
ment of a formal dialogue game in Section 3. Section 2.2 shows the application of



Lakatos’s patterns to real-world natural language discourse in mathematics, demon-
strating their applicability to at least some human mathematical reasoning (more de-
tailed applicability is demonstrated in Appendix A). Section 2.4 contains background
on the Argument Interchange Format, and we review structured argumentation in Sec-
tion 2.5: we draw on both of these in Section 4. Finally, in Section 2.6 we describe
abstract argumentation, which we use in Section 5. All sections will be relevant for
understanding our implementation work and the execution of the implemented system
described in Sections 6 and 7.

2.1. Lakatos’s patterns of dialogue

Lakatos has contributed to the field of Al both methodologically in his philosophy of
science [54] and via his ideas on the growth of informal mathematics [55]. Against the
traditional view that mathematical progress comes down lucky guess work or simple
intuition, Lakatos proposed that there are logical mechanisms — albeit only informally
specified in his work — which underly the mathematical thought process. He challenged
Popper’s view [77] that philosophers can form theories about how to evaluate conjec-
tures, but not theories about how to generate them. He did this in two ways: arguing
that (i) there is a logic of discovery, i.e., the process of generating conjectures and
proof ideas is subject to rational laws; and, (ii) a sharp distinction between discovery
and justification is misleading as each affects the other.

We know of two systematic implementations of Lakatos’s philosophy of mathemat-
ics. Pease [71] constructed a multi-agent system in which agents formed and commu-
nicated theories in both mathematical and non-mathematical domains, and responded
by following Lakatos’s patterns of dialogue. Hayes-Roth [46] developed heuristics for
repairing flawed plans, modelled on [55] and developed in the context of a card game.

At a higher level, Sloman [87] highlights the relevance of Lakatos’s notions to
Al via his analysis of the capabilities that would be necessary for an intelligent robot
(or young child, or other human) to think mathematically. Sloman argues that, since
such thinking is not infallible in humans, the capacity to discover and repair flaws in
arguments and conclusions is essential. Lakatos’s fallibilist picture of mathematics
provides a detailed account of how this can be done, by outlining various methods
by which discovery of mathematical claims and their justification in the form of an
argument can occur. These methods suggest ways in which concepts, conjectures and
proofs gradually evolve via interaction between mathematicians. In Lakatos’s account
— which he presented as a classroom discussion between (very advanced) students —
proofs, conjectures and concepts are fluid and open to negotiation.

Lakatos demonstrated his argument by presenting case studies in dialogue form of
the development of Euler’s conjecture that for any polyhedron, the number of vertices
(V) minus the number of edges (E) plus the number of faces (F) is equal to two, and
Cauchy’s proof of the conjecture that the limit of any convergent series of continuous
functions is itself continuous. The dialogue highlights various moves that can be taken
at different times, and the consequences of these moves on the resulting theory. We
outline these dialogue moves below and represent the flow in Figure 2 This figure
serves as a visual key to the formalisation developed in Section 3. The example in
Section 7 is a portion of Lakatos’s fictional debate of Euler’s conjecture.
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Figure 2: Lakatos’s informal logic of mathematical discovery [55], represented as a flow chart

The first step in a Lakatosian dialogue is for someone to propose a conjecture.
This is optionally followed by a proof, consisting of a list of lemmas and a statement
that the conjecture is now proved. To emphasise: for Lakatos, the basic structure of a
mathematical proof is nothing other than a list of lemmas together with a conclusion
that they support.

After this, participants might accept the conjecture, which will terminate the di-
alogue. Alternatively, they might perform strategic withdrawal, which weakens the
conjecture itself, but (ideally) strengthens confidence in it. If this move is used, then
the subsequent options for dialogue moves are those which are available after the pro-
posal of the initial conjecture. Strategic withdrawal consists of using positive examples
of the conjecture and generalising from these to a class of object, and then limiting
the domain of the conjecture to this class. For instance, the students generalise from
regular polyhedra to convex polyhedra, and then modify Euler’s conjecture to ‘for any
convex polyhedron, V — E + F = 2’. A third alternative at this stage is for a partic-
ipant (opponent) to challenge the conjecture by raising a counterexample. When a
counterexample has been raised, participants (specifically, proponents) have five moves
available to them.

Firstly, they can surrender the conjecture, which will terminate the dialogue.

Secondly, they can deal with exceptions via piecemeal exclusion and thereby ex-
clude a whole class of counterexamples. Piecemeal exclusion amounts to generalising
from a counterexample to a class of counterexamples which have certain properties and
then excluding the entire class. Again, in terms of dialogue moves, this is a form of
propose a conjecture (which will be a weakened version of the original conjecture),
and subsequent dialogue moves will follow the same pattern as for this move. An
example of piecemeal exclusion is that the students generalise from the hollow cube
to polyhedra with cavities, and then modify Euler’s conjecture to ‘for any polyhedron
without cavities, V —E+F =2’

Thirdly, participants can perform monster-barring. This is a way of excluding
an unwanted counterexample, and consists of the argument that the proposed ‘coun-
terexample’ is not valid, as it is not within the claimed concept definition (this may
then be expanded). Thus, it does not conflict with the conjecture, because it is not
a counterexample. For instance, one of the students suggests that the hollow cube (a
cube with a cube-shaped hole in it) is a counterexample to Euler’s conjecture, since



V —E+F =16—24+12 = 4. Another student uses monster-barring to argue that the
hollow cube does not threaten the conjecture as it is not in fact a polyhedron. The con-
cept polyhedron then becomes the focus of the discussion, with the definition possibly
being formulated explicitly for the first time. Thus, subsequent moves here must either
propose an alternative definition, or express a preference to participants as to which
definition should be adopted. Using this method, the original conjecture is unchanged,
but the meaning of the terms in it may change.

Fourthly, participants can perform monster-adjusting, which is similar to monster-
barring. Here, one reinterprets an object in such a way that it is no longer a counterex-
ample, not by (re)defining the domain of the conjecture (so in this case the object is still
seen as belonging to this domain), but by (re)defining subconcepts in the conjecture.
Subsequent moves here are analogous to those following monster-barring, for appro-
priate concept definitions. The example in [55] concerns the star polyhedron. This
entity is raised as a counterexample since, it is claimed, it has 12 faces, 12 vertices and
30 edges (where a single face is seen as a star polygon), and thus V — E 4 F is —6.
This is contested, and it is argued that it has 60 faces, 32 vertices and 90 edges (where
a single face is seen as a triangle), and thus V — E 4 F is 2. The argument then turns to
the definition of ‘face’: again, using this method, the original conjecture is unchanged,
but the meaning of the terms in it may change.

Finally, a fifth dialogue move when faced with a counterexample is to perform
lemma incorporation. This works by considering the counterexample and determin-
ing whether it is global (a counterexample to the main conjecture) and/or local coun-
terexamples (a counterexample to one of the lemmas). If it is both global and local, i.e.,
there is a problem both with the argument and the conclusion, then the move consists
in modifying the conjecture by incorporating the problematic proof step as a condition.
If it is local but not global, i.e., the conclusion may still be correct but the reasons for
believing it are flawed, then the move consists in modifying the problematic proof step
but leaving the conjecture unchanged. If it is global but not local, i.e., there is a problem
with the conclusion but no obvious flaw in the reasoning which led to the conclusion,
then the move consists in looking for a hidden assumption in the proof step, then mod-
ifying the proof and the conjecture by making the assumption an explicit condition.
For example, in the portion of the Euler conjecture discussion treated in Section 7, the
Teacher remarks with respect to a local counterexample: “I no longer contend that the
removal of any triangle follows one of the two patterns mentioned, but merely that at
each stage of the removing operation the removal of any boundary triangle follows one
of these patterns...I can easily improve the proof, by replacing the false lemma by a
slightly modified one, which your counterexample will not refute.” The discussion can
then continue in the same fashion as when the initial problem and proof were proposed.

2.2. Analysing natural language dialogues

Dialogue has been a topic of interest for computer scientists for over three decades
[50, 48]. Dialogue is, fittingly, approached through NLP and linguistic analysis [37],
but it also falls within the scope of pragmatics [22], which “arises as soon as we
move beyond the linguistic analysis of an utterance and ask what the speaker meant
by it” [91]. Searle’s theory of speech acts [85] is a classic in this genre. Pragmatic
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analysis is relevant to both human-computer and multi-agent collaboration [51, 74].
Dialogue game protocols have previously been applied, for example, to multi-agent
planning problems [10, 17]. Dialogue games are “more expressive than auction and
game-theoretic mechanisms, typically allowing participants to question and contest as-
sertions, to advance supporting arguments and counter-arguments, and to retract prior
assertions” [65]. Given their formality, it is not surprising that, at least by default,
“there is no direct connection between formal dialogue games or a theory of sentence
meaning and natural language use” [104, p. 81]. Thus, alongside application areas like
collaborative planning and proof construction, research on natural language dialogues
is associated with a distinct collection of fundamental communication issues, such as
modelling the ways in which mutual belief is established between discussants [97].
For example, the contribution model of Clark and Schaefer [26] is centred on building
common understanding through iterated phases of presentation and acceptance. How-
ever, Lakatos’s informal logic outlined in Figure 2 assumes that discussants are able
to understand each other satisfactorily at the linguistic level, by and large, and focuses
instead on building a shared mathematical theory. The Lakatos Game developed in
Section 3 expands the schematic sketched in Figure 2 in detail. In Appendix A, we
use the full range of this model to mark up a real-world example of a collaboratively-
constructed proof. This shows the applicability of Lakatos’s theory via our interpreta-
tion of his work as a dialogue game, and, more broadly, the relevance of our overall
approach, which we outline in further detail below.

2.3. Formal dialogue systems

The pipeline of collaborative mathematics starts with the expressing the Lakatos model
as a formal dialogue system. The approach of specifying dialectical interaction as a
game or a set of rules governing the interaction has started with the work of Lorenzen
[59] and Hamblin [43]. Lorenzen aimed to translate a system of logic (such as intu-
itionistic logic or classical logic) into a system of dialectical rules, the dialogical logic,
in which the proponent and the opponent aim to collectively prove that a formula is
the tautology of this logic (intuitively, that it is true in this logic). Hamblin, on the
other hand, tried to show that at least some fallacies (flaw argumentation patterns) have
a dialectical nature even though they have inferential structure. He designed a formal
dialogue system, called formal dialectics, and demonstrated that it is possible to formu-
late rules which will prohibit the players to commit the fallacy of circular reasoning of
the form “p because p”. This work led to a variety of similar systems which improved
the original ones, responded to other philosophical problems, or model the communi-
cation amongst agents in multi-agents systems (see e.g. [102, 64, 68, 105]). In this
paper we will treat these systems as a template for the development of formal dialogue
systems.

In the literature, many different types of dialogues were identified (see e.g. [103]
for the first and widely used attempt of classification of dialogues). Lakatos describes
the interactions of mathematicians, when aiming to prove the conjecture, in the way
that is the most closely related to the concept of persuasion dialogue, and in particular
— its “conflict resolution” subtype [19]. Persuasion dialogue is triggered by a difference
of opinion between participants, each of them aims to persuade each other and the main
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goal of the conversation is to achieve the resolution of the conflict.

An excellent survey of systems for persuasion is given in [79]. A dialogue systems
has a dialogue purpose, a set A of participants and a set R of roles which participants
can adopt during a game. Contents of utterances used by the players in the dialogue
are expressed in a topic language L,. At the beginning of a dialogue every player s
has assigned a (possible empty) set of commitments C; C L, which changes during a
dialogue. Every dialogue system includes a logic L consisting of a topic language L,
and a set R of inference rules over L,. The dialogue system consists of several sets
of rules, amongst which the most typically used there are: (1) locution rules which
describe what type of utterances players can execute during a dialogue; (2) structural
rules or protocol which determine the interaction between locutions (i.e., it specifies
which locution can be performed as a reply to another locution)?; (3) commitment or
effect rules which specify for each utterance ¢ the effects which this locution makes on
a set of commitments of the participant i (a commitment of i is a sentence that i publicly
declared as his belief)4; (4) termination rules which determine the cases where no move
is legal, i.e. they should specify the conditions under which the protocol returns the
empty set; and (5) outcome rules which define the outcome of a dialogue, i.e. provide
a criterion to decide which player wins and which player loses the dialogue.

The typical set of locutions and the reply structure identified in [79] is presented
in Table 1. There are six legal moves that formal dialogue systems for persuasion
often permit the players to perform: claim ¢; why @; concede @; retract ¢; ¢ since
S; and question ¢. The structural rules typically allows the players to interact in the
following way: for example, after the agent claims a proposition ¢ his respondent can
challenge this proposition, claim it’s negation or agree with the speaker; when the agent
challenges @ his respondent can justify this statement with a set of propositions S or
withdraw the statement; and so on.

Locutions | Replies

claim ¢ why @, claim —¢, concede ¢

why ¢ ¢ since § (alternatively: claim S), retract ¢
concede @

retract @

¢since S | why v (y €5), concede y (y € 5)
question ¢ | claim ¢, claim —@, retract ¢

Table 1: A set of protocol rules typical for formal dialogue systems for persuasion (according to [79]).

This standard of formal representation of dialogical interaction will be used in Sec-
tion 3 for expressing Lakatos model as a set of rules for mathematicians to follow, if
they aim to collectively prove a conjecture.

3Formally, let M be a set of moves. The set of finite dialogues M < oo is the set of all finite sequences
my,...,m; from M. A protocol, specifying the legal moves at each stage of a dialogue, is a function P :
Pow(L;) x D <— Pow(L.) where D C M < co. The elements of D are called the legal finite dialogues.
4The function C; for a sequence of moves assigns a set of commitments.
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2.4. Argument Interchange Format

The Argument Interchange Format [25] is an attempt to bring together a wide variety
of argumentation technologies so that they can work together. [82] reviews some of
the more recent applications of the AIF. Descriptions of the AIF are given in a number
of places, as are reifications in languages such as RDF and OWL [25, 83, 82]. AIF
uses a graph-theoretic basis for defining an “upper” ontology of the main components
(or nodes) of arguments. Nodes are distinguished into those that capture information
(loosely, these correspond to propositions), and those that capture relations between
items of information, including relations of inference (which correspond to the appli-
cation of inference rules to particular sets of propositions), relations of conflict (which
represent forms of incompatibility between propositions) and relations of preference
(which represent value orderings applied to particular sets of propositions). The in-
stantiated nature of these relations is emphasised in the nomenclature, so whilst infor-
mation is captured in Information (I-) nodes, relations between them are captured as
Rule Application (RA-) nodes, Conflict Application (CA-) nodes and Preference Ap-
plication (PA-) nodes. The general forms or patterns that these applications instantiate
are given in a second part of the AIF ontology, the Forms ontology. The approach fol-
lows in the philosophical tradition of Walton [100], [101] of schematizing stereotypical
patterns of reasoning — and then extending the tradition into conflict and preference. It
is this schematic underpinning which gives the collective name for RA-, CA- and PA-
nodes: Scheme (S-) nodes. The AIF upper ontology is designed to allow specialization
and extension to particular domains and projects, in an attempt to balance the needs of
interchange against the needs of idiosyncratic development.

The AIF standard will be used in Section 4 for showing how the execution of rules
of Lakatos dialogue game is creating argument maps which represent a collective proof
as a directed graph.

2.5. Structured Argumentation

Structured argumentation aims to “give a general structured account of argumentation
that is intermediate in its level of abstraction between concrete logics and the fully
abstract level, providing guidance on the structure of arguments, the nature of attacks,
and the use of preferences, while at the same time accommodating a broad range of
instantiating logics and allowing for the study of conditions under which the various
desirable properties are satisfied by these instantiations” [66, p31]. One of the foremost
and most flexible accounts of structured argumentation is available in ASPIC™ [80,
66] which is not only flexible about the logic used to instantiate arguments within it,
but also provides a straightforward mechanism for inducing abstract argumentation
frameworks, described in the next section.
We simplify the definition in [80] in three ways:

(1) skipping preference ordering over rules, i.e. constraining <==<= 0;

(ii) ignoring strict rules (of which there are none permitted in Lakatos’ theory), i.e.
constraining Ry = 0 and thereby R = R;; and
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(iii) ignoring non-ordinary types of premises, i.e. constraining X, =K; =X, =0
and thereby X = X,,.

Whilst these are important features of ASPIC"in general, they are not exploited here,
and so dropped for clarity. An ASPIC " argumentation system is thus a triple AS = (£,
~, R), where £ is a logical language, ~ is a contrariness function from £ to 2% and R
is a set of rules of the form ¢y, ..., ¢, = ¢. An ASPIC* argumentation theory is then a
pair AT = (AS,X) where X is a knowledge base in AS.

An ASPIC* argumentation theory yields an argument, A, in two cases:

(i) Ais ¢ iff ¢ € XK, and in this case, Prem(A) = {¢}, Conc(A) = ¢, Sub(A) ={¢}.
DefRules(A) = 0 and TopRule(A) = undefined,

(i) AisAy,...,A, = yiff Ay,... A, are arguments and there exists a rule
Conc(Ay),...,Conc(A,) =y
in R, and in this case,
Prem(A) = Prem(A1)U...UPrem(A,), Conc(A) =y
Sub(A) = Sub(A;)U...USub(A,)U{A},
DefRules(A) = DefRules(Ay)U...UDefRules(A,) U{Conc(A;),...,Conc(A,) = v}
and TopRule(A) = Conc(Ay),...,Conc(A,) = .
Finally, an ASPIC™" argumentation theory yields an attack (A, B) in three cases:

(i) argument A undercuts argument B (on B') iff Conc(A) € B’ for some B’ € Sub(B)
of the form BY,...B), = vy,

(i) argument A rebuts argument B (on B') iff Conc(A) € ¥ for some B’ € Sub(B) of
the form BY,...B), = y;

(iii) argument A undermines argument B (on V) iff Conc(A) € ¥ for some Y €
Prem(B).

An ASPIC™ argumentation theory thus yields a set of arguments and a set of at-
tacks, which can be considered as an abstract argumentation framework.

2.6. Abstract Argumentation

Abstract argumentation provides a mechanism for reasoning over directed graphs in
which vertices are propositional labels corresponding to arguments, and edges between
them are relationships of conflict or attack. Dung’s original paper [32] rests upon a
notion of acceptability of arguments which in turn is used to define (amongst others)
a set of arguments which might be sceptically believed: the grounded extension. We
adapt here the definition from [66] which is particularly concise.

An abstract argumentation framework, AF is a pair (AR,Att) where AR is a set
of arguments and Aff C AR X AR is a binary relation of attack. A semantics for AF's
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returns sets of arguments called extensions, which are internally coherent and defend
themselves against attack. For an AF (AR, Att), for any X € AR, X is acceptable with
respect to some S C AR iff Y s.t. (Y,X) € Azt implies 3Z € Ss.t. (Z,Y) € Art. Let
S C A be conflict free, i.e., there are no A,B in S such that (A,B) € Att. Then, S is
a complete extension iff X € § whenever S is acceptable with respect to S and S is a
grounded extension, GE, iff it is a complete extension that is minimal with respect to
set inclusion.

3. Formalisation of Dialectical Interaction: From the
Lakatosian model of mathematical discourse to a
formal dialogue system

In this section we express the Lakatos model of collective proof as a formal dialogue
system, the Lakatos Game (LG), understood in a way of standard representation for
persuasion dialogues introduced in [79] and described in Section 2.3. We assume that
this type of dialectical interaction is in fact the type of persuasion, since the initial
situation of conflicting opinions on whether the conjecture is true or not is sought to
be resolved by the players through communication [103]. However, the nature of the
interaction is not “selfish” (as in the most radical type of persuasion where a player
is interested only in the situation in which s/he is winning the game), because both
parties ultimately aim to collaboratively test whether the conjecture is true and whether
it can be proved, no matter who of them will win (such a type of persuasion is called
collaborative conflict resolution in [19]).

LG determines rules for playing a game of collaborative mathematics and in this
sense it is a formal representation of informal theory introduced by Lakatos. The rules
of the LG system are designed as a bridge between the spirit of the loosely defined
techniques in [55] and the formality required for expressing dialogues as complete
specifications that, ultimately, can be implemented. According to the standard intro-
duced in Section 2.3, LG is specified through five types of rules: (1) locution rules
which determine what types of moves players are allowed to perform during the dia-
logue (i.e. what are legal locutions), and, uniquely for LG, how these moves update the
current mathematical theory in which the co-constructed proof is sited; (2) structural
rules which regulate what types of responses are allowed to be given (i.e. what are legal
responses); (3) commitment rules which specify a set of propositions to which players
will be committed as a result of performing a given locution during the dialogue;> (4)
termination rules which describe when the dialogue will end; and (5) outcome rules
which determine what the result of a dialogue is.

The “players” in our Lakatos Games are a Proponent and an Opponent. These roles
are defined relative to a given conjecture. Multiple speakers may contribute to these

SIn formal dialogue systems, a commitment store is used to keep track of propositions to which a player
is committed, i.e. to which has e publicly declared belief (though this does not mean necessarily that a player
really does believe the proposition, since he can be insincere).
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roles, and both the Proponent and Opponent role can be voiced by the same speaker.
This allows a speaker to avoid contradictory commitments, as long as s/he does not
take on both roles simultaneously. A player who takes the same role as the other
speaker has to commit to the same commitments and the same strategy of proof as his
predecessor(s) as the proof is done collaboratively. In other words, the game does not
distinguish between participant and roles.

3.1. LG System: Overview

The overall goal of the Lakatosian dialogue is to explore a mathematical theory and
construct new examples, concepts, definitions, conjectures and proofs. The analysis of
a fledgling proof and conjecture, via the patterns of discourse that Lakatos identified,
provides a mechanism by which such a theory can grow. The Lakatos Game fulfills the
definition of persuasion dialogue specified in [103, 79], since the dialogue starts with
a conflict of opinion about a conjecture, and aims at resolution of the conflict. In this
type of dialogue, Opponent, O, of a proof disagrees with Proponent, P, and they argue
about elements of the theory from which the proof is constructable. The parties aim to
collaboratively solve the problem rather than winning the game at any cost, thus this
type of persuasive interaction is called collaborative conflict resolution [19].

Notation. Let b,c,d,e, f,g,k,l,m,n,r,s be propositional variables. For clarity in de-
scription, we consistently use specific variables to describe specific objects in Lakatos’s
model:®

e ¢, b: conjecture (c — current conjecture, b — new conjecture)

e [ k: lemma (I — current lemma, k — new lemma)

e m,n: counterexamples which may become monsters, if they turn out to be invalid
e d.e, f,g: definitions

e r,s: propositions used to support or contradict counterexamples

The syntax of the system allows for high level (abstract) description of the legal
moves and interactions that the players can execute during the LG dialogue. In the
actual game of collaborative proof creation, the variables are then instantiated by the
specific statements in natural language such as in Example (1) in Section 7 and exam-
ples in Appendix A.

In the following sections we describe the locution rules (Section 3.2), structural
rules (Section 3.3), and commitment, termination and outcome rules (Section 3.4)
which define our formalisation of the LG System.”

SNote that we use variables, in the strict sense, to refer to propositions, e.g. m refers to stating that
something is a counterexample. However, we use them also as shortcuts to refer to the objects described by
these statements, e.g. we use m to refer to the counterexample itself.

7Notice that the terminology adopted in this paper might be slightly unclear or ambiguous across differ-
ent traditions and disciplines that this work builds upon. Although, in fact all Sections 3-5 talk about some
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3.2. LG System: Locution rules

We specify all of the legal locutions in the LG system by the rules below, describing
informally how the mathematical theory that is being co-constructed by the participants
is updated by each of them; a more formal account showing how these updates are
characterised in AIF and abstract argumentation frameworks then occupies much of
the remainder of the paper.

Proponent and Opponent’s behaviour during a collaborative proof is regulated by
the LG locution rules (see below for their formal specification). In general, they allow
the Proponent to create a proof (see locution rule L1); defend it against Opponent’s
attacks (counterexample, critique; see the rules L2-L5); or surrender the current con-
jecture (L7.2). Conversely, the LG locution rules allow O to: attack the proof, i.e.
attack the conjecture or a lemma (LL2); participate in the modification of a concept (see
L5.4-1L.5.5); decide whether the counterexample is a monster or not (L.6); or accept the
current conjecture and the current lemmas (L7.1).

LG Locution Rules 3. GlobalCounter(m, c) asserts a counterexample
m which supports a counter-conjecture not-c;
L1 Creation of proof the proof as a whole from lemmas to conjecture

is removed, whilst the counterexample is added

1. Conjecture(c) asserts a conjecture c;
v (c) J to the current theory

¢ is added to the current theory

2. Lemmafl) asserts a lemma I; L3 Defence by modifying conjecture

[ is added to the current theory 1. PiecemealExclusion(b) asserts a new conjec-
3. ProofDone announces that a proof for the cur- ture b;

rent conjecture is complete, and adds that infer- b is added to the current theory

ence, comprising the lemmas and the inference 2. StrategicWithdrawal(r, c) asserts r which con-

from them to the conjecture, to the theory (in tradicts with the current conjecture c;

place of the component parts)® the entire proof from lemmas to conjecture is

d from th t th
L2 Attack on conjecture or lemmas fefhioved ot the cticrent Meoty
L4 Defence by manipulating lemmas
1. LocalCounter(m, 1) asserts a counterexample m

that contradicts with a lemma /; 1. LocalLemmalnc(m, 1, k) asserts a new lemma k
[ is removed from the current theory, and as a that incorporates the counter m into an existing
consequence, so is the proof as a whole from lemma [ with a view to replacing /;
the lemmas to the conjecture k is added to the current theory

2. HybridCounter(m, I, ¢) asserts a counterexam- 2. HybridLemmalnc(m, 1) retracts the lemma [ in
ple m that contradicts with a conjecture ¢ and a response to the counter nz;
lemma [; no update to the current theory
is removed from the current theory, and as a 3. GlobalLemmalnc(m, k) asserts a new lemma k
consequence, so is the proof as a whole from which contradicts the counterexample m;
the lemmas to the conjecture m is removed from the current theory

formal aspect of Lakatos theory, we use the phrase “formalisation” specifically to the system introduced in
Section 3 in order to reflect and emphasise the idea that LG aims to describe in the precise manner the infor-
mal, philosophical model proposed by Lakatos. Then, for Sections 4 and 5, we use terms “representation”
and “evaluation” to make the reference to two traditionally distinguished key stages or areas of study of
argumentation (the distinction introduced by Aristotle and then wildly used in argumentation theory).

8This replacement is not a feature intrinsic to Lakatos’ account, but is a convenience introduced here to
harmonise the style of representing inference used later — nothing of significance hangs upon this way of
characterising inference and entailment.
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LS5 Defence by modifying concept is a monster, and the claim’s justification r;

the definition f and the argument that follows
from it are added to the current theory; in case
the move is opponent’s (i.e. preferring propo-
nent’s definition), the original proof as a whole
from lemmas to conjecture is reinstated

1. MonsterBar(m, c, r) asserts r which contradicts
the justification that the counter-conjecture not-
¢ holds because of m;
r is added to the theory, and as a result, the
entire proof from lemmas to conjecture is re-

instated L6 Decision about monster

2. MonsterAdjust(m, r) asserts r which contradicts 1. MonsterAccept(m, r) re-asserts r in support of
with m; the monster, m;
r is added to the theory, m is removed, and as a no update to the current theory

result, the entire proof from lemmas to conjec-

ture is reinstated 2. MonsterReject(m, 1, d, s, c) asserts s which con-

tradicts with r and joins the counter m to sup-

3. PDefinition(m, 1, d) asserts the definition d (per- ports the counter-conjecture not-c;
formed by PT.OPOHCHU WhiCh supports r used to the counterexample ¢ is added whilst both the
show that m is not a valid counterexample; arguments from d to r and from [ to ¢ are re-
d is added to the theory, and r is replaced by the moved from the current theory

argument from d to r 8
. . L7 Decision about proof
4. ODefinition(m, 1, d, s, e) asserts the definition

e (performed by opponent) which contradicts r, 1. Accept expresses the acceptance the current
and supports s; conjecture and the current lemmas; no update
d is removed from the theory to the current proof

5. Prefer(m, 1, f, g) prefers the definition f over 2. Surrender expresses surrender of the current
the definition g in response to the claim that m conjecture; no update to the current proof

L1 Creation of proof. For creating the proof, the player P introduces a conjecture
(L1.1) and lemma(s) (L.1.2), and then announces the end of the informal proof by
saying ProofDone which plays a role analogous to “Il” in typeset mathematics (L.1.3).

L2 Attack on conjecture or lemmas. For attacking the proof, Opponent has three
strategies available: he can attack locally by introducing a counter m to the lemma /
(LocalCounter(m, 1), L2.1); attack globally by introducing a counterexample m to the
conjecture ¢ (GlobalCounter(m, c), L2.3); or attack in a hybrid way by introducing m
which counters both ¢ and [ (HybridCounter(m, 1, c), 1L2.2).

L3-L5 Defending a proof. For defending the proof against Opponent’s attacks, Pro-
ponent has available three strategies: he can modify the conjecture (L.3); manipulate
lemmas (L.4); or modify the definition of a concept in the conjecture or lemmas (LS).
In the first case, P has two alternative options of how to change the current conjecture
c to a new conjecture b — he can either perform PiecemealExclusion(b) and directly
introduce a new conjecture b (L3.1); or perform StrategicWithdrawal(r, ¢) and intro-
duce r which contradicts with the current conjecture c (see L3.2). In the second case,
Proponent acts in some sense as Opponent, i.e. he doubts that his conjecture ¢ actually
holds and uses r to demonstrate it (and then replaces it with a new conjecture b, see the
structural rule S9).

The second strategy of defending against a counter is the manipulation of lemmas
in three different ways. First, P can introduce a new lemma k to replace the current
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lemma [/ which was successfully countered by m (LocalLemmalnc(m, 1, k), L4.1). Sec-
ond, Proponent can retract a lemma / which was countered by m (HybridLemmalnc(m,
l), L4.2). Third, he can add a new lemma k which will be countered by m (GlobalLem-
malnc(m, k), L4.3). The reason for proponent introducing a problematic lemma will
become clear when we look at the next move that this player will perform, i.e. when
we will discuss the structural rules below (see S17 and S18).

Finally, P can defend the proof by modifying the definition of a concept in the
conjecture and, as a result, demonstrating that m is not a valid counterexample, i.e.
that m is in fact a monster. According to this strategy Proponent introduces the propo-
sition r which contradicts with: either the inference from counterexample m to the
counter-conjecture not-c (MonsterBar(m, c, r), see L5.1); or directly the counter m
(MonsterAdjust(m, r), L5.2). In other words, in the first case Proponent does not claim
that m does not hold, but he points out that m cannot be used to infer not-c. In order
to justify that r holds, P introduces a definition of a concept in the conjecture (PDefi-
nition(m, 1, d), L5.3). If Opponent provides his alternative definition (ODefinition(m,
1, d, s, e), L5.4), then the players have to decide which definition (f or g) they prefer
(Prefer(m, 1, f, g), L5.5). Opponent’s definition move takes more variables as a content
than Proponent’s definition move, because O not only attacks P’s definition, but also
defends his move of rejecting that the counterexample is a monster MonsterReject(m,
1, d, s, c) (see L6.2 described below). More specifically, O introduces his own defini-
tion e which contradicts P’s definition d and at the same time e supports a proposition
s which contradicts with Proponent’s attack r from the move MonsterBar(m, c, r) or
MonsterAdjust(m, r). Note that the main difference between the strategy of modifying
the conjecture and the strategy of modifying a concept in this conjecture lies in the
consequences of these moves for a theory in which the proof is conducted. The mod-
ification of the conjecture influences only the conjecture itself, while the modification
of the concept influences all the conjectures in the theory which contain this concept.

L6 Decision about monster. For deciding whether the counterexample is a monster, O
can assert » which P previously introduced to demonstrate that m is a monster. In other
words, Opponent agrees with Proponent by repeating what Proponent said to attack the
counter (MonsterAccept(m, r), L6.1). Alternatively, O can reject that m is a monster by
asserting s which contradicts Proponent’s attack r and is included as a linked premise
into his argument that m supports the counter-conjecture not-c (MonsterReject(m, 1, d,
s, ¢), L6.2).

L7 Decision about proof. For deciding about the acceptance of the proof, Proponent
can only surrender the conjecture (Surrender, L7.2). For deciding about the acceptance
of the proof, Opponent can only accept the proof (Accept, L7.1).

3.3. LG System: Structural rules

The dynamics of the LG System are determined by the structural rules which describe
how the players can navigate through the space of the legal locutions (see below for
their formal specification). Notice that each rule determines a set of possible reposes to
this move, and the players have to choose one and only one of alternatives. A different
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response can be chosen once the players will return to a given state. Figure 3 is a
behaviour tree that summarises the permitted follow-up structure that is detailed below.
In the figure, items with one greater level of indenting are potential follow-up moves.
Terms that are not terminating and that have no descendants should be understood as
links that redirect the flow to nodes that appear higher up in the tree.’

LG Structural Rules

S1 A player P moves first with Conjecture(c); then
each player contributes a locution according
to the rules S2 — S19 with the restriction that
if a move has some propositional content,
then players cannot perform this move again
with the same content

S2 After Conjecture(c):

1. if the lemma commitment store £ is not empty,
then P can:

(a) end the proof: ProofDone
(b) introduce a lemma [: Lemma(l)

2. if the lemma commitment store is empty, then
P must introduce a lemma I: Lemma(l)

S3 After Lemma(l), P can:

1. perform a sequence of locutions introduc-
ing some finite number of additional lemmas:
Lemma(k), ...

2. end the proof of a current conjecture by saying:
ProofDone

S4 After ProofDone:

1. O canintroduce a counterexample m to the con-
jecture c: GlobalCounter(m, c)

2. O can introduce a counterexample m to a
lemma [: LocalCounter(m, 1)

3. O can introduce a counterexample m to [ and c:
HybridCounter(m, 1, c)

4. P can attack the current conjecture ¢ with r:
StrategicWithdrawal(r, ¢)

5. O can accept the proof: Accept
S5 After GlobalCounter(m, c), P can reply:

1. PiecemealExclusion(b) introducing a new con-
jecture b

2. StrategicWithdrawal(r, c¢) attack the current
conjecture ¢ with r

3. MonsterBar(m, c, r) introducing » which con-
tradicts with the justification that the counter-
conjecture not-c holds because of the coun-
terexample m

4. MonsterAdjust(m, r) introducing r which con-
tradicts m

5. GlobalLemmalnc(m, k) introducing a new
lemma k which contradicts m

6. Surrender
S6 After LocalCounter(m, I), P can reply:

1. LocalLemmalnc(m, 1, k) introducing a new
lemma k which replaces [ and incorporates the
counter m

2. Surrender

S7 After HybridCounter(m, c, ), P can reply:

1. HybridLemmalnc(m, 1) retracting a lemma [
which was countered by m

2. Surrender

S8 After PiecemealExclusion(b):

1. if the lemma commitment store is not empty,
then P can:

(a) end the proof for the new conjecture b:
ProofDone
(b) introduce a new lemma k: Lemma(k)

2. if the lemma commitment store is empty, then
P introduces a lemma: Lemma(k)

S9 After StrategicWithdrawal(r, ¢), P introduces a
new conjecture: Conjecture(b)

S10 After MonsterBar(m, c, r), P introduces a defi-
nition d which justifies the proposition r con-
tradicting the justification that not-c¢ holds
because of m: PDefinition(m, 1, d)

S11 After MonsterAdjust(m, r), P introduces a defi-
nition d which justifies the proposition r con-
tradicting the counter m: PDefinition(m, 1, d)

S12 After PDefinition(m, r, d), O can reply:

9A diagram of this process is also available in the form of a finite-state machine, online at http://

arg.tech/lakatosFSM.
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1. MonsterAccept(m, r) agreeing that m is a mon-
ster because of r

2. MonsterReject(m, r, d, s, c¢) disagreeing that m

is a monster with respect to ¢ by asserting s
which contradicts with r justified by d

S13 After MonsterAccept(m, r):

1. O can introduce a counterexample 7 to the con-
jecture c: GlobalCounter(n, c)

2. O canintroduce a counterexample # to a lemma
I: LocalCounter(n, 1)

3. O can introduce a counterexample n to ¢ and [:
HybridCounter(n, I, ¢)

4. P can attack the current conjecture ¢ with s:
StrategicWithdrawal(s, c)

5. O can accept the proof: Accept

S14 After MonsterReject(m, 1, d, s, c¢), O can
introduce a definition e which contradicts
with Proponent’s definition 4 and justifies
the proposition s asserted in the move Mon-
sterReject: ODefinition(m, 1, d, s, e)

S15 After ODefinition(m, 1, d, s, e):

1. O can introduce a preference of Proponent’s
definition d over her own definition e: Pre-
fer(m, 1, d, e)

2. P canintroduce a preference of Opponent’s def-
inition e over her own d: Prefer(m, 1, e, d)

S16 After Prefer(m, 1, f, g):
1. if Prefer(m, 1, f, g) is performed by P after Mon-
sterAdjust(m, r), then P can reply:

(a) PiecemealExclusion(b) introducing a new
conjecture b

(b) StrategicWithdrawal(s, c) attacking the
current conjecture ¢ with s

(c) MonsterBar(m, c, s) introducing s which
contradicts the justification that the
counter-conjecture not-c holds because of
the counter m

(d) GlobalLemmalnc(m, k) introducing a new
lemma k which contradicts m

(e) Surrender

2. if Prefer(m, 1, f, g) is performed by P after Mon-
sterBar(m, c, r), then P can reply:

(a) PiecemealExclusion(b) introducing a new
conjecture b

(b) StrategicWithdrawal(s, c¢) attacking the
current conjecture ¢ with s

(c) MonsterAdjust(m, s) introducing s which
contradicts the counter m

(d) GlobalLemmalnc(m, k) introducing a new
lemma k which contradicts m

(e) Surrender
3. if Prefer(m, 1, f, g) is performed by O, then:

(a) O can introduce a counterexample 7 to the
conjecture c¢: GlobalCounter(n, c)

(b) O can introduce a counterexample n to a
lemma [: LocalCounter(n, 1)

(¢) O can introduce a counterexample n to ¢
and [: HybridCounter(n, I, c)

(d) P can attack the current conjecture ¢ with
s: StrategicWithdrawal(s, c)

(e) O can accept the proof: Accept

S17 After GlobalLemmalnc(m, k), P retracts the
lemma k which was countered by m: Hybri-
dLemmalnc(m, k)

S18 After HybridLemmalnc(m, 1), P replies Con-
Jjecture(b)

S19 After LocalLemmalnc(m, I, k), P replies Proof-
Done

S1-S4 Creation of proof. At the beginning of the game Proponent creates an initial,
draft proof. His first move is to introduce a conjecture ¢ (rule S1). At that point no
lemma has been introduced yet, so he has to propose at least one lemma / according to
S2.2. This rule is also used to prohibit Proponent from removing all lemmas and ending
the proof by saying ProofDone (this is allowed by the rule S2.1). Then, Proponent
can end the proof (S3.2); or continue adding further lemmas (S3.1) and then end the
proof (S3.2). If Proponent is not introducing the initial version of the proof, but is
introducing changes to the conjecture by performing Conjecture(c) and there is still at
least one lemma in the proof, then he can either continue introducing additional lemmas

(S2.1b), or end the proof (S2.1a).

After the initial version of the proof is ended, there are three possible ways of con-
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S1  P. Conjecture(c)
S$2.2 — P. Lemma(l)

S3.1 P. Lemma

S3.2 P. ProofDone

S2.1 — P. ProofDone() (option only when £ # 0)
S4.1 0. GlobalCounter(m, c)

S5.1 P. PiecemealExclusion(b)

S8.1 —————— P. ProofDone

S82 ——————— P. Lemma

S5.2 P. StrategicWithdrawal

S5.3 P. MonsterBar(m,c,r)

S10 P. PDefinition(m,r,d)

S12.1 O. MonsterAccept(im, r)

S13.1 ————— O. GlobalCounter

S13.2 0. LocalCounter

S13.3 O. HybridCounter

S13.4 P. StrategicWithdrawal
S13.5 0. Accept

S12.1 O. MonsterReject(m,r,d, s,c)
S14 ————— 0. ODefinition(m, r,d, s, €)
S15.1 ——————— 0. Prefer(m,r,d,e)

S16.3 —————— 0. GlobalCounter
S16.3 0. LocalCounter
S16.3 O. HybridCounter
S16.3 P. StrategicWithdrawal
S16.3 ———— 0. Accept

S15.2 P. Prefer(m,r,e,d)

S16.2 ———— P. PiecemealExclusion
S16.2 P. StrategicWithdrawal
S16.2 P. MonsterAdjust*
S16.2 P. GlobalLemmalnc
S16.2 P. Surrender

S5.4 P. MonsterAdjust(m,r)

S11 ———— P. PDefinition(m, r,d)

S12.1 O. MonsterAccept

S12.2 O. MonsterReject(m,r,d, s,¢)
S14 —————— 0. ODefinition(m,r,d, s, e)

S15.1 O. Prefer(m,r,d,e)
S16.3 0. GlobalCounter
S16.3 O. LocalCounter
S16.3 O. HybridCounter
S16.3 P. StrategicWithdrawal
S16.3 0. Accept

S15.2 P. Prefer(m,r,e,d)

S16.1 P. PiecemealExclusion
S16.1 ——— P. StrategicWithdrawal
S16.1 P. MonsterBar*

S16.1 ————— P. GlobalLemmalnc
S16.1 P. Surrender

S5.5 P. GlobalLemmalnc(m, k)

S17 P. HybridLemmalnc(m, k)

S18 ———— P. Conjecture

S5.6 P. Surrender

S4.2 0. LocalCounter(m,[)

S6.1 P. LocalLemmalnc(m,, k)

S19 ————— P. ProofDone

S6.2 P. Surrender

S4.3 0. HybridCounter(m, 1, c)

S7.1 P. HybridLemmalnc(m, )

S18 P. Conjecture

S7.2 P. Surrender

S4.4 P. StrategicWithdrawal(s,c)

S9 P. Conjecture

S4.5 0. Accept

Figure 3: Behaviour Tree for the LG system. Bold indicates where a new variable has been introduced in a
given path down the tree. The names of moves without any variables represent links to positions that appear
higher up in the tree. Underlining indicates moves that end the game. Note that structure under MonsterBar
and MonsterAdjust is similar but not identical: the point of difference is indicated with asterisks.



tinuing the game: either Opponent attacks the proof by introducing a counterexample
m to the conjecture, a lemma, or both the conjecture and a lemma (S4.1-S4.3) together;
or Proponent changes his mind and introduces a new conjecture in order to prevent the
proof from a potential future attack from opponent (i.e. a potential counterexample for
which the old conjecture might not hold, S4.4); or Opponent accepts the proof (S4.5).

S5-S7 Attack on conjecture or lemmas. Opponent’s attack on the conjecture, via
GlobalCounter(m, c), generates the largest number of possible alternative paths through
the Lakatos game (S5, see also Figure 3). First, P can immediately give up, i.e., he can
become convinced of Opponent’s critique and decide to surrender the proof (S5.6).
Another way to respond is to only partly agree with O and modify the conjecture so
that the attack fails (S5.1-S5.2). Proponent can introduce the changes directly either
by piecemeal exclusion, i.e., introducing a new conjecture b (S5.1), or by strategically
withdrawing (S5.2), i.e., expressing doubts about the current conjecture c first.

Opponent’s attack on a lemma, LocalCounter(m, [), and an attack on both a lemma
and the conjecture, HybridCounter(m, c, 1), generate much simpler histories for LG
dialogue games. In the first case, Proponent can either replace a lemma with a new one
which incorporates Opponent’s critique (LocalLemmalnc(m, I, k), S6.1) and then he
announces that the new proof (with the new lemma) for the old conjecture is completed
by saying ProofDone (S19); or P can agree with the critique and surrender the proof
(S6.2). In the case of HybridCounter attack, P can either retract a lemma which was
countered by m (HybridLemmalnc(m, 1), S7.1) and then incorporate the critique into a
new conjecture b (Conjecture(b), S18); or P agrees with the critique and surrenders the
proof (87.2).

S8-S9 Defence by modifying conjecture. The difference between these piecemeal
exclusion and strategic withdrawal is that PiecemealExclusion(b) has to be always trig-
gered by Opponent’s attack, while StrategicWithdrawal(r, c) can be performed at any
point of the game when Proponent changes his mind about the acceptance of the con-
jecture, even immediately after ending the initial proof (see S4.4). After Strategic With-
drawal(r; ¢), P introduces a new conjecture b (S9).!° In both cases, after introducing
the new conjecture b, P can propose some additional lemmas or end the new proof in
the same way as he did at the beginning of the game (see S8 for excluding piecemeal
and S2 for strategically withdrawing).

S10-S16 Defence by modifying concept and decision about monster. The final type
of response to GlobalCounter(m, c) is for Proponent to entirely disagree with Oppo-
nent’s global counter. In other words, P tries to show that m is not a valid counterex-
ample (i.e. that m is a monster) either indirectly by introducing r which attacks the
inference between m and the counter-conjecture not-c (MonsterBar(m, c, r), see S5.3);
or by introducing r which directly attacks the counter m itself (MonsterAdjust(m, r),
see S5.4). Both of these moves require Proponent to formulate a new definition d for a

10Notice that the rule for PiecemealExclusion(b) in S8 repeats the specification for Conjecture(c) in S2,
which means that in the first case Proponent again introduces a new conjecture directly as a response to
Opponent’s attack rather than doing so via a Conjecture(b) move.
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concept in the current conjecture which justifies the attack » (S10 and S11). Next, Op-
ponent can accept the definition and as a result agree that m is the monster (MonsterAc-
cept(m, r), S12.1); or reject it and assert s which contradicts with r (MonsterReject(m,
r, d, s, c), S12.2). If O accepts that m is a monster, then he can try to attack using a
different counterexample to the conjecture, a lemma or both (S13.1-S13.3); or he can
become convinced and decide to accept the proof (S13.5); alternatively Proponent can
modify the conjecture (S13.4). If O rejects that m is a monster, then he has to propose
his own definition e of this concept which supports his claim s which is in contradiction
to Proponent’s claim r (S14). Then, one of the players has to decide which definition
is preferred: either Opponent prefers Proponent’s definition over his own (S15.1), or
Proponent prefers Opponent’s definition (S15.2).!! Tf Proponent expresses the pref-
erence, then P can next: change the conjecture through piecemeal exclusion (S16.1.a
and S16.2.a) or strategic withdrawal (S16.1.b and S16.2.b); try to show again that m is
not a valid counterexample by monster-adjusting (if previously he did monster-barring
(S16.1.¢)), or by monster-barring (if previously he did monster-adjusting (S16.2.c)); in-
troduce a new lemma that contradicts m (S16.1.d and S16.2.d); or surrender the proof
(S16.1.e and S16.2.e). If Opponent expresses the preference, then: O can attack again
by introducing another counter to the conjecture (S16.3.a), or a lemma (S16.3.b), or to
both (S16.3.¢); P can change the conjecture by strategically withdrawing (S16.3.d); or,
finally, O can become convinced and decide to accept the proof (S16.3.e).

S17-S19 Defence by manipulating lemmas. Proponent can also introduce the changes
to the conjecture indirectly, i.e., by firstly modifying a lemma and then modifying the
conjecture. More specifically, first P performs GlobalLemmalnc(m, k) which intro-
duces a new lemma k contradicting the counter m (S5.5). This lemma reveals the
hidden assumption that needs to hold in order for the conjecture to hold too. Then,
P continues with hybrid lemma incorporation which retracts the recently introduced
lemma k (S17) and then incorporates the hidden assumption into a new conjecture b
(S18).

3.4. LG System: Commitment rules, termination rules and outcome
rules

The effects of the players’ interactions are determined by three final types of rules: the
commitment rules determine the effects that these interactions have on commitment
stores of the players; termination rules define when the dialogue ends; and outcome

Notice that it is prohibited by the LG rules for both players to prefer each others definitions, or for
neither of them to prefer the other’s definition. According to the rule S15, the players have to choose one
and only one of the Preference moves — either Proponent will chose to prefer Opponent’s definition or vice
versa. As soon as one of them does the Preference move, the set of available moves change (described now
by the rule S16) and the other player cannot perform the Preference move anymore. The protocol determines
what should be the next move in the game to match the idea of collaborative mathematics proposed in the
Lakatos model, but it does not determine what the players should say. In other words, according to the model
the players should resolve between themselves which of alternative definitions is better in order to continue
collaborative proof.

24



rules describe who won the dialogue. See below for their formal specification for the
LG System.

LG Commitment Rules LG Termination Rules
C1 Conjecture commitment store T1 A dialogue terminates if either Accept or Sur-
1. After P performs Conjecture(b) or render is performed

PiecemealExclusion(b), the conjec-
ture store is emptied and the propo-
sitional content b is included in the
store

LG Outcome Rules

O1 Proponent wins, if a dialogue terminates with

C2 Lemma commitment store Accept
1. After P performs Lemma(k) or Glob-
alLemmalnc(m, k), the content k is
included in the lemma commitment

store

02 Opponent wins, if a dialogue terminates with
Surrender

2. After P performs LocalLemmalnc(m,
I, k), I is removed from the store and
k is added

3. After P performs HybridLem-
malnc(m, 1), | is removed from the
store

In the LG system for collaborative mathematics, there are two types of commitment
stores: the store for the conjecture (see C1) and the store for lemmas (C2). These stores
keep track of the currently posited lemmas and conjecture. Most commitment updates
are forced by Opponent’s attacks (i.e., when Proponent is not able to defend against an
attack, then he is forced to change the current proof). Similarly, the information about
the other propositions used by players in counterexamples, definitions and so on, is not
stored at all, since they do not contribute directly to the proof — they only influence its
shape during the game.

Proponent can add a conjecture b into the conjecture commitment store by per-
forming either Conjecture(b) or PiecemealExclusion(b) (C1). This type of store has to
consist of only one proposition at any time of the game (i.e., it has to consist of the cur-
rent conjecture), therefore both of these moves first empty the store to remove the old
conjecture (if there is one), and then adds a new conjecture b. Further, P can add lem-
mas to, and remove them from, the lemma commitment store in three different ways:
(i) adding a new lemma k either by performing Lemma(k) or GlobalLemmalnc(m, k)
(C2.1); (ii) replacing lemma ! with a new lemma k by performing LocalLemmalnc(m, I,
k) (C2.2); or (iii) removing lemma [/ from the store by performing HybridLemmalnc(m,
) (C2.3).

The dialogue terminates when Opponent performs Accept, or when Proponent per-
forms Surrender (see (T1)). Proponent wins if Opponent accepts the proof (O1); and
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Opponent wins if Proponent surrenders the proof (02).!> Note that the phrase “win”
is not used here to suggest that there is a competitive character to LG dialogues, since
we assume, like Lakatos, that they are modelling a collaborative process. Our aim is
just to stay also close to the standard terminology used in formal dialogue systems. As
a result, Proponent’s “winning” should be interpreted as the acceptance of the current
conjecture and the current lemmas, and Opponent’s “winning” should be interpreted as
surrender of the current conjecture.

4. Graph-based Representation: From a formal dialogue
system to Argument Interchange Format structures

The majority of research in the philosophy of dialogue focuses on normative, idealised
models of interaction; only quite recently has there been an empirical turn that aims to
connect such models with discursive practice. Normative games like DC [62] aim to
make explicit features of dialogues which are latent in natural interactions (in the case
of DC, cumulativity, whereby retraction is prohibited). Descriptive games such as PPD
[103] aim to express natural interaction with more formal apparatus, thereby allowing
dialogues to be assessed and guided (for comparative analysis of DC, PPD and many
other games, see [105]). The Lakatos Game is designed with both normative and de-
scriptive flavours, providing scaffolding and guidance for practical interactions, as well
as tools that can be used to interpret and assess discourse. Crucially though, Lakatos
games are not aimed, like DC and PPD, at establishing a common understanding, or a
maieutic exploration of a space; they are instead aimed quite specifically at generating
a proof, or, more specifically, at yielding a theory from which a proof can be extracted.

As a consequence of this normative-descriptive balance, the Lakatos Game pro-
vides a good test case for AIF, which similarly aims to handle both analysis of linguis-
tic material as well as representation and evaluation of the norms of discourse context
[25]. For although AIF structures are designed to handle structures of argument, their
closest counterparts in formal logical systems are not formal theories or sets of propo-
sitions, but proofs. If the description of LG is adequate, therefore, it should yield AIF
structures which can automatically be mapped to such proofs.

There is, however, a challenge. AIF is used as infrastructure for an interconnected
web of debates and arguments that allows navigation through different modes, do-
mains, types of argument, with the ability to extend, critique and adumbrate them via

12Notice that Proponent cannot perform Surrender when he is winning, because the structural rules allow
him to do it only when he does not choose to defend the proof as a response to an attack. For example, in
the case of the attack of GlobalCounter(m, c¢) (described by the series of the rules S5-S7), Proponent can
immediately give up without a defence (S5.6), otherwise he chooses to recover the status of the proof and the
defence makes him being in the winning position until the next attack. In the similar way, the structural rules
allows Opponent to perform Accept only when he decided to not continue attacks, conceding as the result
that Proponent managed to successfully defend his proof. For example, Opponent cannot reply Surrender
to LocalCounter, because it is prohibited by the rule S6. After LocalCounter, the turn belongs to Proponent
and he can either give up (conceding as the result that Opponent’s attack is successful) or defend his position
with LocalLemmalnc(m, 1, k).
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a range of systems and tools. This infrastructure — collectively referred to as the Ar-
gument Web [16] — is founded upon several assumptions. One cornerstone is the
assumption of cumulativity: once an argument has been committed to the Argument
Web, it is there in perpetuity. Although individual arguers may change their position or
retract their arguments, the arguments themselves must remain available so that others
can refer to them, build upon them and revise them.

But if the Argument Web [16] is to capture the emerging proofs as they are de-
veloped, extended, redefined and reframed by a Lakatos game, how can the intrinsic
nonmonotonicity be reflected by cumulative infrastructure? Our goal is to ensure that
the semantics of the moves in the game, as they are defined in terms of AIF updates,
should yield argument structures with a specific set of properties. These argument
structures should be submittable to a simple, algorithmic procedure which will yield
precisely the theory that represents the current shared understanding at any point in
the game. To deliver this, the effects that each move has on AIF structures need to be
carefully defined, then the argumentation semantics computation can be shown to yield
exactly the correct subset corresponding to proof structures.

4.1. AIF structure update: AIF operations of LG locutions

For Proponent’s Con jecture(c) and Lemma(l;) moves, all that needs to be done is to
add c and the /; to the AIF graph. The ProofDone move is used to establish the in-
ferential connection between them (in AIF terms, it adds an RA-node with incoming
edges from each of the /; and an outgoing edge to the ¢). In other words, the Lakatosian
concept of a proof is being modelled as the inference or argument from lemmas to con-
jecture. The inference is established by using proponent’s commitment stores, connect-
ing all those propositions in the Lemma Commitment Store to that in the Conjecture
Commitment Store. Figure 4 visualises the AIF structure available after proponent has
offered a putative proof for a conjecture, ¢, based on lemmas L;, L, and L3. The vi-
sualisation adopts a common convention of AIF, with both propositions and relations
between them (of inference, conflict, and later, preference and restatement) expressed
in boxes, and with directionality (e.g. of inference), as defined in [25], indicated by
directed edges. For convenience, each proposition is also indicated as belonging to
either proponent (P) or opponent (O).

There are three types of counter that Opponent can offer in response to such an
argument: countering the conjecture, countering one of the lemmas, or countering
both conjecture and lemma simultaneously. These are referred to as GlobalCounter,
LocalCounter and HybridCounter, respectively. All three types of counter introduce
conflict into the AIF structure:

e Opponent’s GlobalCounter(m,c) performs a total of four updates to the AIF
structure. First, it adds m to the graph and uses it as a premise in a new argu-
ment. The conclusion of that argument is the negation of the conjecture, c. The
negation is glossed as “It is not the case that ¢, and the second step is to add the
new element to the AIF. The relationship between ¢ and not-c is clearly one of
(symmetrical) conflict, so the third step is to add new CA nodes between ¢ and
not-c. Finally, the AIF is also updated to reflect the argument from m to not-c
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Figure 4: Lemmas, conjecture and proof

with a new RA between them.

e Opponent’s LocalCounter(m,l) simply introduces the counterexample, m and
the symmetrical conflict (i.e. a pair of CA nodes) between that and the lemma, /.

e Opponent’s HybridCounter(m,l,c) performs the same update as
LocalCounter, with additional conflict added between m and c. We might ex-
pect HybridCounter to cause updates that constitute the union of the effects of
GlobalCounter and LocalCounter, introducing an attack with the lemma and a
support for a counter-conjecture. Instead though, HybridCounter uses a sim-
pler characterisation of attack between m and c, introducing a CA directly, rather
than adding an argument for the negation of the conjecture. The reason for this
discrepancy is that the negation is required for the action of future moves permit-
ted by LG after GlobalCounter (viz. MonsterBar and MonsterAd just), whilst
these moves are not legal following HybridCounter, so the characterisation can
be simpler.

These three updates for handling opponent counters are visualised in Figure 5. Pro-
ponent’s eight possible substantive responses (excluding Surrender) to a counter then
update the AIF graph further:

e Piecemeal Exclusion allows for a revised conjecture, b, to be asserted, and de-
mands a new ProofDone move to create the inference from all of the current
lemmas to the new conjecture. Note that this creates a new inference (i.e. a new
RA-node) — the old one remains in the AIF graph.

o StrategicWithdrawal allows Proponent to alter the conjecture, first through in-
troducing a reason, r, for rejecting the current conjecture, then, through the oblig-
atory subsequent Con jecture move, proposing a new conjecture. The AIF is
updated to reflect the addition of the new piece of information, r, plus the sym-
metrical conflict between that and the old conjecture, c.
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Figure 5: Global, Local and Hybrid counters

e MonsterBar allows Proponent to challenge the counterexample offered by Oppo-
nent by changing the definition of terms upon which it depends. The MonsterBar
move itself updates the AIF in two steps. First, it adds a reason, r, for rejecting
the counterexample and treating it as a monster. Then a conflict is established
from r to the RA-node constituting Opponent’s extant argument from counterex-
ample, m, to counter-conjecture, not-c. That is, r is treated as an undercutter.
These results are visualised in Figure 9.

e MonsterRe ject-ing allows Opponent the same freedom as Proponent in offering
a reason for thinking the counterexample does, indeed hold. This reason s is
naturally in conflict with Proponent’s reason that the counterexample does not
hold, so the AIF updates are first to add s and to link it as a further premise in
the argument from the example, m, to the counter-conjecture, not-c (that is, to
connect s to the RA-node between m and not-c). Then the symmetrical conflict
between s and r is also added. These updates are also visualised in Figure 9.

e MonsterAd just-ing follows the same pattern as MonsterBar-ing, except that the
counterexample is attacked directly by redefinition. That is, MonsterAd just in-
troduces a counter, r, and the symmetrical conflict between r and m. An intuition
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remains, however, for MonsterAd just: that the counter to » somehow trumps the
monster. To capture this intution, we further add a preference(PA) that allows r
to defeat m. Both MonsterBar and MonsterAd just then open a phase of the di-
alogue in which definitions are introduced (see below). The results of this move
are visualised in Figure 10.

e HybridLemmalnc-orporation, following a HybridCounter paves the way for the
introduction of a revised conjecture, ¢’ which incorporates one lemma, ;. The
update, however is performed by a subsequent Con jecture move.

e GlobalLemmalnc-orporation makes explicit a hidden assumption by adding it
as a new lemma, k. It is also responsible for introducing the conflict between
the counterexample, m (identified in the preceding GlobalCounter) and this new
lemma. It then forces a Hybrid Lemmalnc-orporation so that k is incorporated
into a new conjecture and thence proof.

e Finally, LocalLemmalnc-orporation works in a very similar way to
GlobalLemmalnc-orporation, except that it introduces a revised lemma k be-
fore adding a new inference connecting all lemmas and (unchanged) conjecture
through a mandatory Proo f Done move. In addition, AIF provides the ability to
represent non-inferential relations between propositions, including paraphrastic
relationships such as restatement. We can capture the ‘incorporates’ relationship
in this way as an MA node, but this has no impact on the argument frameworks
— structured and abstract — that are created, functioning currently only to make
the linguistic relationship. The AIF updates effected by the three types of lemma
incorporation are visualised in Figure 6 — 8.

The moves of MonsterBar and MonsterReject can lead to further exchanges re-
garding the definitions upon which the counterexample depends, each of which pro-
vides further updates to the AIF structure:

e PDefinition allows Proponent to offer a definition, d captured as a proposition in
the AIF structure, which is then linked through an inference to the reason, r for
barring or adjusting a monster (from a MonsterBar or MonsterAd just move).
So PDefinition adds both the proposition d and the RA from that to r. Propo-
nent’s definition can be MonsterAccept-ed or MonsterRe ject-ed. (The idea of
definitions being used as the bases for arguments is one that is familiar in the
philosophy of argument — see, e.g, [1]).

e MonsterAccept. In the former case, there is no further AIF update because Op-
ponent is simply reiterating Proponent’s position. In the latter case, Opponent
can MonsterReject, which has already been treated, above.

e ODefinition allows Opponent to offer an alternative definition, which requires
update to the AIF structure not only to include the new definition, e, but also (i)
the conflict with Proponent’s definition and (ii) the inference from e to Oppo-
nent’s reason, s, for thinking the counterexample holds.
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Figure 6: Local Lemma Incorporation

e Prefer allows resolution between competing definition by introducing a relation
of preference between two definitions. The move thus introduces a PA node
between definitions f and g (the variables are thus named to emphasise that
either Proponent’s definition d or Opponent’s definition e may be preferred).

The effects of all of these moves are shown in Figures 9 and 10, which show the struc-
tures built up through the monster barring and monster adjusting pathways, respec-
tively. Other moves described in the previous section impact the dialogical dynamics
of the game (i.e. of what can be said, and of what commitments exist in stores) but do

not update AIF structures beyond that.

5. Evaluation using Structured and Abstract Argumen-
tation Frameworks: From AIF structures to abstract

argumentation frameworks

AIF structures are one way to handle ‘structured argumentation.” Other approaches,
such as that provided by ASPIC* [80], have been shown to be compatible, in that it is
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32




3: PDefinition

6: Prefer

Default Preference

A polyhedron is a system of polygons
arranged in such a way that (1) exactly
two polygons meet at every edge and
(2) it is possible to get from the inside
of any polygon to the inside of any

other polygon by a route which never

Default Inference

p  crosses any edge at a vertex
2: MonsterBar
‘ o For the twin-tetrahedron, V-E+F=3

Default Inference

Default Conflict

Default Conflict

A polyhedron is a surface consisting

of a system of polygons

(o)

5: ODefinition

Default Inference

polyhedron

P

Not just any system of polygons is a

4__| Default Conflict

A

Default Conflict

It is not the case that for all polyhedra,

o V-E+F=2

Default Inference
Default Conflict

Default Conflict

P For all polyhedra, V-E+F =2 ‘

1: GlobalCounter

Default Inference

P

Any polyhedron, after having a face
removed, can be stretched flat on the

blackboard

f

Default Conflict

A 4

0

Both these twins are connected, both

constitute one single surface

4: MonsterReject

In triangulating a map, one will always

P get a new face for any new edge

if we drop the triangles one by one
from a triangulated map, there are only
two alternatives -- the disappearance
of one edge or else of two edges and a

P

vertex

Figure 9: Monster barring and monster rejecting, with alternative definitions and preferences between them
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For the star polyhedron, the faces are For the star polyhedron, the faces are

the small triangles

Default Inference
P For the star polyhedron V-E+F is 2

Default Conflict
Default Conflict

—ﬁ

oFor the star polyhedron V-E+F is not 2

Default Inference

It is not the case that for all polyhedra,
(o) V-E+F=2

Default Conflict

the large pentagonal planes

Default Inference
oFor the star polyhedron, V-E+F is less than 2

-]

Default Conflict
Default Conflict

Default Preference

Default Inference

Default Conflict

PForaII polyhedra, V-E+F=2 |

Default Inference .
if we drop the triangles one by one

from a triangulated map, there are only

Any polyhedron, after having a face two alternatives -- the disappearance

removed, can be stretched flat on the of one edge or else of two edges and a
P blackboard P vertex

In triangulating a map, one will always

p getanew face for any new edge

Figure 10: Monster adjusting with alternative definitions and preferences between them
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possible (under certain assumptions'?) to translate from AIF to ASPIC™ [16]. Prakken
has further shown (ibid.) that ASPIC" structures can be used to induce abstract argu-
mentation frameworks which can make use of the wide range of existing argumentation
semantics for computing acceptability.

The approach described in this section shows how as a Lakatos Game is executed,
ATF structures are created which, when translated to ASPICT, produce abstract argu-
mentation frameworks which under grounded semantics have as acceptable arguments
all and only those elements which correspond to the mathematical theory accepted by
the participants at a given stage of the game. Though other single extension semantics
could be employed, it turns out that the strong, sceptical interpretation provided by
grounded semantics deliver precisely the results required,as will be shown in this and
the following sections. Our strategy is inductive, so we aim to show that each move
updates the AIF graph in such a way that the grounded extension of the induced frame-
work corresponds to the definitions of how the mathematical theory is evolving given
by the LG locution rules in Section 3.2.

We describe updates in three steps. First, showing how an ASPIC* argumentation
theory for the Lakatos Game, AT.g = ((L16,RLg,n),XK), is updated by virtue of the
relationship between AIF and ASPIC" [16] (we adopt a convention whereby the new,
post-locution argumentation theory and its constituents are referred to with a prime ('),
whilst the original, pre-locution version is unadorned). Second, by virtue of the rela-
tionship between ASPIC™ and abstract argumentation, we show updates to an abstract
framework for the Lakatos Game LG, AF; ¢ = (AR, attacks; ), comprising a set of
abstract arguments AR and a relation of attacks attacksyg over them following Dung
[32]. Finally, the updates to the grounded extension of the argumentation framework,
GE|, are computed and compared with the status of the theory defined by the locution
rules of LG. Where abstract arguments correspond to single propositions in the struc-
tured argumentation, they are labelled the same for convenience (i.e. a proposition p
in the structured argumentation will correspond to an abstract argument also labelled
p). Where we are interested in abstract arguments that correspond to a complex in the
structured argumentation, we name them uniquely and explicitly describe their compo-
sition (so, for example, a structured argument [p so g] might correspond to an abstract
argument o).

For clarity in presentation, the locutions are divided into three categories: those that
add material to the theory (constructive locutions), those that attack material already in
the theory (critical locutions) and those that make no explicit update to the material in
the theory (neutral locutions).

13These assumptions serve to exclude boundary cases from the AIF to ensure (i) that arguments terminate
with I nodes; (ii) that RA nodes always move from one or more premises to exactly one conclusion; and (iii)
that PA and CA nodes always connect exactly one incoming with exactly one outgoing node, and never serve
themselves as the incoming or outgoing nodes of other S nodes —i.e. never serve as premises or conclusions,
conflicting or conflicted elements, preferred or dispreferred elements. None of the AIF updates described in
Section 4 introduce violations to these assumptions.
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5.1. Constructive locutions

For Conjecture(c) and Lemma(l), the update to ATy is straightforward in that X is
updated to include them (i.e. X' = KU {c} and K = K U {I}, respectively'*).

Next, we must exploit the fact that the system is constrained to prohibit repetition
of identical moves (i.e. moves of identical type with identical variable instantiations,
but irrespective of speaker). So long as these moves have not come before!>, and there-
fore the contents, ¢ and /, have not previously been introduced, the AIF will be updated
to include c¢ or [, and there are guaranteed to be no extant conflicts with either c or /
(since conflicts can only be introduced by the GlobalCounter, LocalCounter, Hybrid-
Counter or StrategicWithdrawal moves which can only follow earlier Conjecture or
Lemma moves). Thus the new abstract framework after a Conjecture(c) move, AF},
is expanded from the old thus: AR ; = AR; g U{c} and attacks}; = attacks;c (and
similarly for Lemma(l)). With no conflicts, abstract arguments corresponding to ¢ and
[ are guaranteed to have no attacking arguments, and therefore to be in the grounded
extension. That is, flxs.t.(x,c) € attacks’or(x,1) € attacks'.

For PiecemealExclusion(b), the revised conjecture, b is added to the AIF, and con-
sequently X' = K U {b}. Under the same restrictions and assumptions as for Con-
Jecture(c), above, the corresponding abstract argument b is guaranteed to be in the
grounded extension. The old conjecture that has been replaced is guaranteed to be ex-
cluded from the grounded extension because of the conflict introduced by the Glob-
alCounter or Prefer, the only moves that can legally precede PiecemealExclusion.
Thus, AR} ; = AR;g U {b} and attacks); = attacksyg (since the necessary update to
attacksy g has been carried out by other moves).

For StrategicWithdrawal(r, c), the revised conjecture is added to the AIF along with
its conflict with the old conjecture ¢. (Although from a protocol perspective this is a
seemingly counter-strategic move for Proponent to make, it is in fact quite common in
real exchanges — see, for example, Section A.1, turn 1). In the ASPIC + argumentation
theory, X' = KU {r} and ¢ =cU {r}. In the induced abstract framework, the conflict
results in new attacks between r and the abstract argument representing the proof, ®,
i.e. [l; so c]. This does not remove the previous conjecture or the extant proof in its
support, but suspends it, knocking it out of the grounded extension, whilst focus shifts
to the revised, narrower conjecture. For StrategicWithdrawal(r,c), the update is thus
AR} ; = AR g U{r} and attacks; ; = attacks g U {(r,®),(c, w)}.

For MonsterBar, the AIF is updated with a reason, r, which is used as an undercut-
ter in the argument from counterexample to counter-conjecture. Clearly, X' = KU {r}
and in addition, m = not-c = m = not-c U {r}. The reason, r, is guaranteed to be in
the grounded extension since there could be no attackers; as a result, the status of the
abstract argument corresponding to the inference from counterexample, m, to counter-
conjecture, not-c, is guaranteed to be out (since it is attacked by the abstract argument
corresponding to r). With this argument out, if there are no other pending counterex-

14Specifically this is an update to K p» the subset comprising ordinary premises. Updates for LG make no
use of the X, subset comprising axioms.

Bwith the further commonsense assumption that within a single dialogue, a conjecture is not usable as a
lemma, definition, or counterexample, and vice versa)
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amples (and the dialogue protocol constrains the discussion to handle just one at a
time), the conjecture will be in the grounded extension. Thus, MonsterBar(m, c, r) up-
dates AR} ; = ARy U{r} and attacks) ; = attacks;cU{(r, o)} where o is the abstract
argument corresponding to the structured argumentation complex [m so not-c].

For MonsterAdjust, a direct counter, r, to the counterexample m, is introduced along
with the symmetrical conflict between them, but also a preference to ensure r defeats
m. For ASPIC™, this means that X' = KU {r}, W =mU{r} and ¥ =7\ {m} (this
latter is the result of the AIF PA node). As with MonsterBar-ing, if there are no other
pending counterexamples (and the dialogue protocol constrains the discussion to han-
dle just one at a time), the conjecture will be in the grounded extension. Thus, for
MonsterAdjust(m, r), the associated update is AR} ; = AR U {r} and attacks,; =
attacksg U {(r,m),(r,a)}, where o is the abstract argument corresponding to the
structured argumentation complex [m so not-c].

GlobalLemmalnc, makes explicit the hidden assumption (as described by Lakatos)
as a lemma (the subsequent incorporation of the lemma into the conjecture is handled
by HybridLemmalnc). The new lemma is introduced and added in to AIF and thence
the ASPIC™ argumentation theory thus: X' = KU {k}, m =mU{k} and K =ku {m}.
At the abstract level, the argument corresponding to this lemma is guaranteed to be
in the grounded extension. That is, for GlobalLemmalnc(m, k), the update is AR} ; =
ARy U{k} and attacks) ; = attacksy g U{(k, o), (m,k), (k,m)}, where a is the abstract
argument corresponding to the structured argumentation complex [m so not-c].

For LocalLemmalnc(m, 1, k), the new lemma k is added and guaranteed to be in
the grounded extension, and the old is guaranteed to be out as a result of the preceding
LocalCounter move. So, for LocalLemmalnc(m, 1, k), the resulting update to ASPIC*
is just K’ = K U {k}, with the corresponding update at the abstract level: AR}, =
AR U{k} and artacks) ; = attacksyg.

For PDefinition, Proponent’s definition, d in support of the reason for treating the
counterexample as a monster is added to the AIF. The ASPIC™ theory is updated not
only with X' = KU {d} but also R} ; = Ry gU{d = r}. The reason d is guaranteed to
be in the grounded extension (again, under a constraint of non-repetition). The abstract
argument corresponding to the reason alone is no longer induceable, instead being
replaced by the abstract argument representing the complex [d so r]. The extant attack
between r and the argument o (from m to not-c) is thus replaced by one from 8 to o,
and likewise that from r to m by one from & to m. Thus AR} ; = (AR, U{d,0}) \ {r}
and attacks}; = (attacks;c U{(8, @), (8,m)}) \ {(r,@),(r,m)} where § is the abstract
argument corresponding to the structure argumentation complex [d so r] and « is that
for [m so not-c].

5.2. Critical locutions

Next we move on to moves that reduce the size of the extant theory by introducing
conflict into the AIF structure and thence the abstract framework. All are moves of
Opponent, as is to be expected. First, GlobalCounter(m, c) updates the AIF to in-
troduce not-c in conflict with the conjecture ¢ (as well as introducing m, of course).
This conflict introduces attacks between the abstract arguments involving ¢ on the
one hand and those involving not-c on the other [16]. The ASPIC™ theory is updated

37



such that X' = KU {m,not—c} and R} ; = R g U{m = not-c} plus ¢ = U {not-c}
and not-c = not-cU {c}. This ensures that ¢ is no longer in the grounded extension.
Because the conflict is symmetrical in the AIF, there are bidirectional attacks in the
abstract framework so not only is ¢ out of the grounded extension, so too is not-
c. This accurately reflects not only that ¢ is knocked out of the current proof, but
also that the counterposition is not added to the theory. Instead the proof is tem-
porarily suspended — if the dialogue were to stop at this point, there would be no
proof: which is exactly the status delivered by the grounded extension of the ab-
stract framework. For GlobalCounter(m, c), we have that AR} ; = ARy g U {m, o}
and attacks}; = attacks;c U {(@,a), (o, ®)}, where a is the abstract argument cor-
responding to the structured argumentation complex [ so not-c] and w corresponds to
the argument [/; so c] (i.e that connects all of the lemmas /; to the conjecture, ¢).

The LocalCounter(m, 1) and HybridCounter(m, I, c) moves similarly add conflicts,
and have similar effects on the abstract framework and thence the grounded exten-
sion. For LocalCounter(m, 1), X' =X U{m} and m =mU{l} and I =1U {m}.
At the abstract level, this yields AR} ; = AR g U {m} and attacks;; = attacksyc U
{(l,m),(m,1),(m,®)}, where @ corresponds to the argument [/; so ¢]. The update asso-
ciated with HybridCounter(m,l,c) is the union of those for LocalCounter and Global-
Counter, except that the monster, m is itself the counter to the conjecture, viz., X' = KU
{m} and’ =mU{l,c} and I =1U{m} and @ = U {m}. Thus at the abstract level,
AR} ; = ARG U{m} and attacks; ; = attacks; U {(m,1),(l,m), (m,®),(®,m), (m,c),
(c¢,m)}, where @ corresponds to the argument [/; so c].

For MonsterReject, the situation rather mirrors MonsterBar in that a reason, s,
along with the symmetrical conflict between s and r are added to the AIF. With no
resolution between these two, neither s nor r will be in the grounded extension; as
a result the abstract argument corresponding to the argument from counterexample to
counter-conjecture will be attacked by nothing other than the conjecture, so both will be
excluded from the grounded extension. Finally, the new reason, s is adduced as an ad-
ditional premise in the argument from m to not-c. Thus for MonsterReject(m,r,d,s,c),
the ASPIC™ framework is updated so that X' = KX U{s} and R} ; = Ryg U {s,m =
not-c} plus ¥ =5U{r} and 7 = 7U {s}. In the resulting abstract framework, AR} ; =
AR U{s, 0} and attacks} ; = attacks.cU{(8,s),(s,8),(8,0),(0,m),(®,0)}, where
d is the abstract argument corresponding to the structured argumentation complex [d
so r], o is [{s,m} so not-c] and ® is [/; so c].

Lastly, ODefinition, which is only used as Opponent’s substantiation of their Mon-
sterReject, introduces a new definition, e and symmetrical conflict between that and
d. Again, with no resolution between d and e, neither are in the grounded exten-
sion. The update introduced by ODefinition(m,r,d,s,e) on ASPICTis thus X' = KU
{e} and R} ; = R g U {e = s} plus d =du {e} and @ =eU{d}. In the result-
ing abstract framework, AR} ; = (AR g U {e,€}) \ {s} and artacks}; = (attacks G U
{(d,e),(e,d),(8,€),(g,6)})\ {(s,0),(8,s)}, where O is the abstract argument corre-
sponding to the structured argumentation complex [d so r] and € is [e so s].
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5.3. Neutral locutions

Two further moves have important updates to the abstract argumentation framework
despite not updating the theory structure directly (that is to say, they are important in
terms of the dialogical dynamics of LG but have only indirect impact on the theory and
its update (indirect inasmuch as constraining the subsequent application of moves that
do have direct impact on the theory).

The Prefer move, is unique in that it will either expand or contract the grounded ex-
tension depending on which player executes it. The protocol demands that Pre fer can
only be executed after both Proponent and Opponent have offered definitions, which
in turn can only occur in a MonsterBar-PDefinition-MonsterReject-ODefinition series.
First, we consider Opponent’s use of Prefer, in which Opponent’s definition, e, is pre-
ferred to Proponent’s, d. This ensures that the abstract argument corresponding to e
defeats that corresponding to d, and further that the abstract argument € (correspond-
ing to the structured argumentation complex [e so s]) defeats the abstract argument
O (corresponding to the structured argumentation complex [d so r]). With § out of
the grounded extension, the argument ¢ (the abstract argument corresponding to the
argument [m so not-c]) is no longer undercut, thereby ensuring that ¢ is out of the
grounded extension. For Proponent’s use of the Prefer move, the situation is reversed,
so that d is preferred to e, and thence that & is preferred to €. This in turn ensures
that « is out of the grounded extension and with nothing else to attack it, ¢ is in.
So after Proponent’s Prefer move, ¢,r,d € GE};, whilst not-c,m,s,e ¢ GE;G. The
definition of Prefer(m,r, f,g) allows us to capture these abstract consequences inde-
pendently of the speaker, expressing that f is preferred to g (and in the abstract, that
n founded on f is preferred to y founded on g), regardless of which of f and g are
instantiated with d or e. The effect of adding a preference into the structured argumen-
tation is to remove one of the pair of symmetrical attacks in the asbtract framework.
The ASPIC " update is thus just 7 = fU{g} which results at the abstract level, in
AR} ; = AR, and attacksy; = attacks;g \ {(g, f). (v, n)}.

The ProofDone move adds a new abstract argument, ® corresponding to the ar-
gument from all of the current lemmas, /;, to the conjecture, ¢, and uses it to re-
place the atomic abstract argument corresponding to c. Finally, everything that pre-
viously attacked ¢ will now be attacking @. For ASPIC™, the update is ths sim-
ply R} = Rig U{li = ¢}. The ramifications at the abstract level are more com-
plex: AR}, = (ARG U )\ {c} and attacks;; = attacks;c U (B;, ),V B;s.t.(Bi,c) €
attacksy g, where @ is the abstract argument corresponding to the structured argumen-
tation complex [/; so c].

To complete the assessment of semantic update, it is also useful to explain why the
remaining four moves have no direct effect at all.

The purpose of HybridLemmalnc is to introduce a new conjecture, ¢/, but it is
not HybridLemmalnc itself that does this, but rather the Conjecture move which is
required to follow it. Similarly, the abstract argument corresponding to the inference
from the new set of lemmas to the new conjecture is handled later by ProofDone whilst
the exclusion of the lemma that has been incorporated and of the conjecture which has
been revised are both handled earlier by the HybridCounter or GlobalLemmalnc which
must have preceded it. The update associated with HybridLemmalnc itself, therefore,
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is null (i.e. AR} ; = ARy and attacks; ; = attacksyg).

The MonsterAccept move allows Opponent to reiterate what has already been said,
and so does not update the semantics any more than it updates the underlying AIF
structure.

In addition there are the two terminating moves, Accept and Surrender neither of
which effect material update on the AIF structure. Instead, they mark the conclusion
of the dialogical process.

In short, HybridLemmalnc, MonsterAccept, Accept and Surrender all play a role
in the dialogical structure, but their place in the dialogical exchange ensures that any
appropriate updates with resulting semantic changes are executed by other moves in
the dialogical sequence.

The complete set of updates, both syntactic and resultant semantic, for all moves in
LG is summarised in Table 1, which also shows, in the final column, the direct impact
on the resulting grounded extension — though this omits potential reinstatements and
other indirect effects of the updates described in columns three and four.

6. Implementation: From the theoretical model to com-
putational model

We have shown how argumentation semantics can, in theory, furnish us with the most
up-to-date status of a theory in a Lakatos Game. All the components of this pipeline
[88] are also implemented — so, execution of Lakatos Games requires no new develop-
ment other than the creation of a Dialogue Game Description Language (DGDL) [105]
specification to capture the rules described in Section 3 and the updates described in
Section 4.

A DGDL specification consists of three main parts; composition, rules and interac-
tions. The composition describes the general features of the dialogue game, and, in the
case of LG, the composition is as shown in Listing 1.
turns{magnitude:multiple, ordering:liberal}
roles{Proponent, Opponent}
players{min:2, max:2}
player{id:Proponent}
player{id:Opponent}
store{id:Conjecture, owner:Proponent,

structure:set, visibility:public, {""}}

store{id:Lemmas, owner:Proponent,
structure:set, visibility:public, {""}}

Listing 1: LG DGDL Composition

Firstly, we specify that a turn can consist of multiple moves and that the ordering
is liberal, i.e. that there are not single alternating moves made by each participant. The
roles of Participant and Opponent are then given with a limitation that only these two
players are possible. Finally, we specify the commitment stores that will be used to
store the conjecture and the lemmas that will comprise the proof.

The LG specification contains only one rule, a starting rule that is triggered when
the dialogue begins and specifies that the dialogue starts with Proponent making a
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Move AIF update ASPIC T update AFj update
X ‘ Ric ‘ - ARG ‘ attacksyc
Conjecture(c) +c U{c} 0 0 U{c} 0
Lemma(l) +1 u{l} 0 0 u{i} 0
ProofDone +RA(l;,0) 0 u{i= |0 ot | V(B ),
c} \{c} Vis.t.
(Bie) €
attacksyg
LocalCounter(m,1) + m, | U{m} 0 U{(m,1),| U{m} U
CA(m, D, (I,m)} {(l,m),(m,1),
CA(l, m) (m,m)}
HybridCounter(m,l,c) | + m, | U{m} 0 U{(l,m),| U{m} U
CA(m, D, (m,1), {(m,1),(l,m),
CA(, m), (¢,m), (m, ), (w,m),
CA(m, c), (c,m)} (m,c),(c,m)}
CA(c, m)
GlobalCounter(m,c) + m, notc, | U {m, | Um= | U{ U{m,o}| U{(o, )
RA(m, not-c), | not-c} | not-c} | (c,not-c), (a,m)}
CA(c, not-c), (not-c,c)
CA(not-c, ¢)
PiecemealExclusion(b) | +b u{b} 0 0 U{b} 0
StrategicWithdrawal +r, CA(r, ¢), | U{r} 0 U{(r,c), | U{r} U{(r, o),
(r,c) CA(c, 1) (¢,r)} (w,r)}
LocalLemmalnc(m,1,k) | +k, MA(l,k) | U{k} 0 0 U{k} 0
HybridLemmalnc(m,l) | O 0 0 0 0 0
GlobalLemmalnc(m,k) | +k, CA(m, k), | U{k} 0 0 U{k} U{(k, @),
CA(k,m) (m,k), (k,m)}
MonsterBar(m, c,r) + r, CA(r, | U{r} 0 U{(m= | U{r} U{(ra)}
RA(m, not-c)) not-c,r)}
MonsterAdjust(m,r) +r, CA(r,m), | U{r} 0 U{(m,r)}| U{r} U{(r,m)
CA(m, 1) \{(rm)} (ro)}
PDefinition(m,r,d) +d,RAWd, m) | U{d} U{d= | 0 u{d, s} | U{(d,m)
} | (8.0}
\{(r,m),
(ra)}
ODefinition(m,r,d,s,e) | + e, RA(s, e), | U{e} W{ U{(e,d),| Ufe,e} | U
CA(e, d), e=s} | (d,e)} \{s} {(d,e),(e,d),
CAW, e) (6,€),(g,0)}
\
{(5,6),(8,9)}
Prefer(m.r, f,g) +PA(f, 9) 0 0 \{(f:8)} 0 \
{(¢./),(r,n)}
MonsterAccept(m,r) 0 0 0 0 0 0
MonsterReject + 5, RA{s, | U{s} U U{(s,r), | U{s,o0} | U
(m,rd,s,c) m},  not-c), {{s,m} | (r,9)} {(8,s),(s,0)
CA(s, r), = (0,0),(w,0),
CA(r, 5) not-c} (8,0)}
Accept 0 0 0 0 0 0
Surrender 0 0 0 0 0 0

Table 1: Summary of the syntactic and semantic updates in LG
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‘Conjecture’ move.

The remainder of the LG DGDL specification then consists of the interactions avail-
able and the effects which they have on the dialogue. A simple example of an interac-
tion description is Proponent’s first move, ‘Conjecture’ (Listing 2).

interaction{Conjecture, {c}, Asserting, {c}, "$c is the conjecture",
{
if { size(Lemmas, Proponent, !empty) } then

move (add, next, ProofDone, Proponent)

move (add, next, Lemma, {l}, Proponent)

store (empty, Conjecture, Proponent)

store (add, {c}, Conjecture, Proponent)

— 2y R R A~

else

move (add, next, Lemma, {[/}, Proponent)
store (empty, Conjecture, Proponent)
store (add, {c}, Conjecture, Proponent)

— 2 & -

Listing 2: The Conjecture Interaction

In this example, the name of the move is given first, followed by its content and
the fact that Proponent is asserting the conjecture. The string “$c is the conjecture” is
a description of what the move is doing, used to allow users to identify it. The body
of the interaction looks at whether the Lemmas commitment store is empty, and if not,
allows Proponent to perform a ProofDone move next. Regardless of the state of the
Lemmas store, Proponent also has the option to perform the Lemma move at this point.
Finally, in both cases, any existing conjecture is removed from the Conjecture store
and the new conjecture is added.

Another example of a more complex interaction, ‘GlobalCounter’, is given in List-
ing 3.
interaction{GlobalCounter, {m,c},

Asserting, {m}, Asserting, {!c},
Contradicting, {<{c},{!c}>, DefaultConflict},

Contradicting, {<{!c},{c}>, DefaultConflict},
Arguing, {<{m},{!c}>, DefaultSupport}, "$m is a counter to
$cm,
move (add, next, PiecemealExclusion, {b}, Proponent)
move (add, next, StrategicWithdrawal, {r, ¢}, Proponent)
move (add, next, MonsterBar, {m,c,r}, Proponent)
move (add, next, MonsterAdjust, {m,r}, Proponent)
move (add, next, Surrender, Proponent)
move (add, next, GloballLemmalnc, {m,l}, Proponent)

— R R R R R~

Listing 3: The GlobalCounter Interaction

Here Opponent is giving a counterexample, ‘m’, to the conjecture, ‘c’. This coun-
terexample is arguing in support of the negation of the conjecture, ‘!c’.

Having specified the LG system in DGDL, this specification can then be processed
by the Dialogue Game Execution Platform (DGEP) [14]. DGEP allows participants to
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take part in dialogues following the rules specified by a DGDL protocol. When a new
dialogue is initiated, DGEP allows users to join in the roles available, and any initial
rules are processed. From this point on, DGEP maintains the legal move list for each
participant, based on the rules and interactions: a rule is executed when it is in scope,
and an interaction when it is moved by a player during the game.

DGEP provides a range of web service interfaces, allowing a user to both perform
interactions and get information about the current dialogue state (for example, their list
of available moves). These web services can then be used by either software agents
playing the roles of specific participants, or by graphical interfaces allowing human
users to take part in the discussion. Arvina [56] is one such graphical interface, and a
screenshot of a LG protocol dialogue taking place in Arvina can be seen in Figure 11.

arvina=~- E 3
Participants Arvina User | “ |

I Arvina User

g John Lawrence
i John Lawrence Monster Bar "A hollow cube is not a polyhedron"

Live Discussion Map g John Lawrence

Definition "A polyhedron is a surface consisting of a system of polygons" supports "A hollow
[ cube is not a polyhedron”

"For a hollow cube V-E+F is not 2" is a counter to "For all polyhedra V-E+F=2"

] a Arvina User
"For a hollow cube V-E+F is not 2" is not a monster

Click to view

Select amove: Strategic withdrawal of ... j

Figure 11: Arvina screenshot

One of the advantages of using DGEP is that it not only provides a robust plat-
form for the execution of a dialogue protocol, but also creates argument structures as
a side effect. AIF infrastructure for querying and updating is available in the webser-
vices of AIFdbl® [57]; conversion to ASPIC™T and induction of abstract frameworks is
handled by TOAST [90]; and calculation of acceptability semantics is performed by
Dung-O-Matic [31]. (We use these tools for convenience because they work directly
with AIF and ASPIC" data structures, though many other systems perform compara-
ble computation using various alternative approach —Tweety [93] using defeasible logic
programming, ASPARTIX [33] using answer set programming and ArgSemSAT [24]
using SAT solving.)

Arvina has been demonstrated to provide a practical stepping stone towards mixed-
initiative argumentation [89], a type of collaborative intelligence [35] or human-agent

Yhttp://www.aifdb.org
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collective [49]. Where agents have knowledge bases populated by pre-existing ar-
guments, they can contribute to an evolving Lakatos game on a level playing field
with human participants. Indeed, DGEP makes no distinction between types of clients,
whether human or artificial. The Arvina system, the Lakatos game, and agents contain-
ing several small suitable knowledge bases are available online at http://arvina.
arg-tech.orqg.

Finally, the AIF structures created as a side-effect of executing the DGDL speci-
fication for LG using Arvina can be submitted to the TOAST system [90] which im-
plements (i) the translation from AIF to ASPIC™; (ii) the induction of abstract frame-
works according to the ASPIC" definitions; and (iii) the computation of semantics
over those structures, including grounded, by calling DungOMatic [31]. Sample re-
sults from TOAST running over structures created by Arvina and DGEP executing the
Lakatos Game DGDL specification are shown in Figure 12.

®

from ARG-tech
The Online Argument Structures T

1mewaork?

Add rule labels | (] Close undel
Query:
If you find TOAST useful, and wis

M. Snaith and C. Reed. TOAST: ONIIE MariuT HIBIENIENLAUUIL 11 FIULECUNIYS U1 LIE FUWIT ITEHIGUUNET CUMIEISILE Unt Cunpuasan moucrs v srgument (COMMA 2012)
2012. [pdf]

Figure 12: TOAST running on a Lakatos dialogue example

7. Execution: Collective proof as argumentation

In this section we look at a fully worked example dialogue, considering strategies of
global counter and monster-barring (see Section 7.2), and then local counter and local
lemma incorporation (see Section 7.3) in greater depth. A proof idea for Euler’s con-
jecture is presented by the Teacher on the second page Proofs and Refutations [55].
The proof outline comes from [23], and consists of three steps (for a diagrammatic rep-
resentation of these steps, carried out on the cube, see Figure 13, taken from [55, p.8].)
Note that in (1-1), GAMMA’s reference to “my counterexample” is made on behalf of
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both ALPHA and GAMMA who speak in the role of Opponent throughout, whereas
TEACHER and DELTA speak in the role of Proponent.

part 1 part 2

(a) part 3 (b)

Figure 13: Given the cube, after removing a face and stretching it flat, we are left with the network in part
1. After triangulating, we get part 2. When removing a triangle, we either remove one edge and one face, or
two edges, one vertex and a face — shown in parts 3(a) and (b) respectively.

ey

mo a0 o

TEACHER: We arrived at a conjecture concerning polyhedra, namely that
for all polyhedra, V-E+F = 2, where V is the number of vertices, E the
number of edges and F the number of faces. ... ... [ have one [a proof]. It
consists of the following thought experiment.

TEACHER: Step 1 [described above, as lemmas].

TEACHER: Step 2.

TEACHER: Step 3.

TEACHER: Thus we have proved our conjecture.

ALPHA: I have a counterexample ..... Imagine a solid bounded by a pair
of nested cubes — a pair of cubes, one of which is inside, but does not touch
the other. ..... for each cube V-E+F = 2, so that for the hollow cube V-E+F
=4.

DELTA: This pair of nested cubes is not a polyhedron at all. .... Itis a
monster, .... not a counterexample.

DELTA: A polyhedron is a surface consisting of a system of polygons.
GAMMA: My counterexample is a solid bounded by polygonal faces.
GAMMA: A polyhedron is a solid whose surface consists of polygonal
faces.

TEACHER: ...For the moment let us accept Delta’s definition. Can you
refute our conjecture now if by polyhedron we mean a surface?
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1.  GAMMA: I propose a trivial counterexample. Take the triangular network
which results from performing the first two operations on a cube. Now if |
remove a triangle from the inside of this network, as one might take a piece
of the jigsaw puzzle, I remove one triangle without removing a single edge
or vertex. So the third lemma is false — and not only in the case of the cube,
but for all polyhedra except the tetrahedron, in the flat network of which
all the triangles are boundary triangles. ...

m. TEACHER: I no longer contend that the removal of any triangle follows
one of the two patterns mentioned, but merely that at each stage of the
removing operation the removal of any boundary triangle follows one of
these patterns. ... All that I have to do is to insert a single word in my
third step, to wit, that *from the triangulated network we now remove the
boundary triangles one by one’.

n. TEACHER: ... I can easily (...) improve the proof, by replacing the false
lemma by a slightly modified one, which your counterexample will not
refute.

In the remainder of this section, we work step by step through this dialogue and show
how our protocol both, covers all of the moves made, and, at the same time, produces
updates to the generated the Argument Interchange Format structure and argumentation
structure which capture the status of the proof after each turn of the dialogue.

7.1. Introducing the proof

The first five moves in the above dialogue transcript, (1-a) to (1-e), correspond to the
introduction of the initial proof by Proponent. Table 2 shows how the execution of
these steps using the LG dialogue system (column 1 of the table) updates a shared
theory, understood by the participants as the current state of the proof (according to
the definitions in Section 3.2) (in column 2). The AIF structures added by these moves
are shown in column 3'7. The current ASPIC" framework caused by mapping the
complete new AIF structures according to [16] are shown in column 4. The abstract
argumentation framework caused by inducing from the new ASPIC™ framework a new
AF are shown in column 5, and finally the grounded extension computed over that AF
is shown in the last column.

In (1-a), Proponent presents their conjecture: “For all polyhedra, V - E + F = 27,
this corresponds to the Conjecture(C) move in the LG protocol governed by the locu-
tion rule L1.1 and structural rule S1. The current state of proof consists now of the
conjecture C which adds I, a first node, to the AIF structure depicted on the left hand
side in Figure 14. This also adds C as an argument to the ASPIC" framework, and to
the abrstact argumentation framework. As there are no conflicts at this stage, C is in
the grounded extension.

The next three moves (1-b), (1-c), and (1-d), present the three lemmas that the

17 As the AIF updates only add to the structure, we only show those components added for each move in
the table. For all other columns, the cumulative state is shown in each row.
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Table 2: Proponent’s construction of the initial proof

Formalisation Representation Evaluation
LG System _[Dialogue Theory| AIF [ ASPIC™ [ AF g [GELc
Proponent — Proposal of initial proof
(1-a) . K ={C} -
Conjecture(C) c i‘ : li"zf i“glp"lyh"dm' VBl Re=0) Al’f“j' = {{}C Fole
[L1.1,S1] = -={} G =
I:  Any polyhedron, af- _
(Ll_b) C ter having a face removed, X 7£C’Ll} AR g={CL} | C
emma(L,) ; : . R ={} _
[L12,52.2] L, can be stretched flat on the |~ -0 attrg = {} Ly
blackboard [L;]
(1-c) C I3: In triangulating a map, | K ={C,L;,L,} AR c={CL, | C
Lemma(L,) L, one will always get a new | Ry ={} L} L,
[L1.2, S2.1b] L, face for any new edge [L,] = attr = {} L,
Ls: if we drop the triangles
C one by one from a triangu- _ _ C
(1-d) L lated map, there are only two K ={CL1,Lp,Ls} | ARg = {C.L1, Ly
Lemma(L3) L alternatives — the di . Ric={} Ly L3} L
[L1.2, S2.1b] 2 alternatives — the disappear- | =2 0 attig = {} 2
L; ance of one edge or else of L;
two edges and a vertex [L3]
L if: {C{,LI,LZ,L3} . 3
(1-e) . Ric= ARG =A{L1.La,
ProofDone() L Rac  dbbld 1)1 e L) L
[L13, S2.1a] Ls (L1233, O] attyg = {} Ls
Ly,Lr,L3s0C - 0]

Proponent is using to support their conjecture (the full text of these lemmas can be seen
in Table 2). This introduces three lemmas L, Ly, L3 into dialogue theory, and three
new nodes I, I3, I into AIF structure and argumentation framework in Figure 14.

Finally, in (1-e), the Proponent announces that they have completed constructing
their proof, making the ProofDone move. Performing ProofDone not only shows that
the proof is complete allowing the Opponent to raise any challenges, but also creates
a new rule of inference (RA|) whereby representing that the given lemmas support
the conjecture. This creates a new abstract argument, @, corresponding to the proof
structure, and, as there are no attacks at this stage, ® and the three given lemmas are
all in the grounded extension (Figure 14). The updates performed during these moves
are shown in Table 2.

7.2. First strategy of testing the proof: Countering the conjecture

Once the Proponent has presented the initial proof, the Opponent makes their first
attack. Here, the Opponent provides a counter to the conjecture, which the Proponent
rejects as not fitting the definition of a polyhedron. The updates carried out in this
section of the dialogue are summarised in Table 3.

The counter begins in (1-f), following the rules L2.3 and S4.1, the Opponent uses
GlobalCounter to introduce the counterexample of a hollow cube (i.e. M; or I5): “For
the hollow cube V-E+F = 47, to the conjecture “For all polyhedra, V-E+F = 2” (thus
new conflict nodes CA; and CA; in the updated AIF structure in Figure 15). More
specifically, they use this counterexample as a premise to justify (RAj) the counter-
conjecture (not-C, Ig): “It is not the case that for all polyhedra, V-E+F = 2”. This
results in the creation of a new abstract argument in Figure 15, o, which is in mutual
conflict with the abstract argument, @, representing the proposed proof, and hence @
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Proponent

©O0606

Opponent

(1-b) Lemma(L;)

(1-c) Lemma(L;)

Figure 14: The update made to the Argument Interchange Format structure (on the left-hand side) and the
argumentation framework (on the right-hand side) upon Proponent’s introduction of the initial proof. On the
left hand side, nodes labelled as I;-14 are information nodes which correspond to the statements exchanged
during the first five moves of the dialogue (1-a)-(1e) (the symbols from LG system, C, L;-L3, are given in
the brackets). The moves specified according to the LG systems are marked by grey area. The nodes RA,,
represent inferences and CA,, (on the next figures) — conflicts. The right hand side of Figure shows the
abstract framework created as a result of the update to the AIF structure (nodes at the top are Proponent’s
arguments and nodes on the bottom — Opponent’s). The nodes in bold line denote arguments which are
acceptable (in GE), while the nodes in dotted line denote arguments which are unacceptable (out of GE)
at a given stage of the dialogue. Finally, some moves create new arguments to be added or replace other
arguments in the framework: in this case we mark the fragment of the AIF structure and label it with new
abbreviation such as o in this figure.

is no longer in the grounded extension.

o . (1-f) GlobalCounter(M,,C) Proponent

Opponent

Figure 15: The update made to the Argument Interchange Format structure (on the left-hand side) and the
argumentation framework (on the right-hand side) upon Opponent’s counter to the conjecture (1-f).

The Proponent defends this challenge in (1-g), using MonsterBar, to show that this
is not a valid counterexample, claiming that, whilst the hollow cube does indeed have
the property “V-E+F = 47, it is not a polyhedron (R or I7). Following rule S10, the
Proponent must then support this statement (RA3), using the PDefinition move. As
such, the Proponent provides a definition of a polyhedron: *“ A polyhedron is a surface
consisting of a system of polygons”, which excludes the hollow cube (D or Ig). The
resulting abstract argument, 8, conflicts with ¢, returning ®, to the grounded extension
(see Figure 16).

At this stage in the dialogue, Opponent could choose to agree with Proponent that
this is not a valid counterexample (rule S12.1). However, in this example Opponent
decides to continue the attack (rule S12.2), first making the move MonsterReject, to
reject Proponent’s defence by using Ig (S), and CA4 and CAs, and then providing an
alternative definition of a polyhedron (I10 or E), which supports Ig, using ODefinition.
As we now have two conflicting definitions, the Proponents reason is no-longer suf-
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(1-g) MonsterBar(M;,C,R)

................. ¥ Proponent
o] POEO06O6
e L
‘ <> O
. i \*a‘\, ®
Opponent

(1-h) PDefinition(M;,R,D)

Figure 16: The update made to the Argument Interchange Format structure and the argumentation framework
upon Proponent’s rejection of M as a counter (1-g), and definition supporting this (1-h).

ficient to mean that the counter is rejected, and, as such, ® is once again out of the
grounded extension (Figure 17).

(1-i) MonsterReject(M,,R,D,S,C)

Proponent

i

o & @&

NN
NN (e
ﬂ&}ﬁ?x;w

Opponent

(1-j) ODefinition(My,R,D,S,E)

Figure 17: The update made to the Argument Interchange Format structure and the argumentation framework
upon Opponent’s rejection of the Proponents definition (1-i) and proposal of an alternative definition (1-j).

Progress in the dialogue reaches an impasse until one of the party excepts the defi-
nition proposed by the other. In the case of our example, the Proponent’s definition is
preferred, and the Opponent makes the Prefer move to indicate this. In the AIF struc-
ture, this results in a preference (PA| node) showing that D is preferred to E, and, as
such, the conflict from E to D in the abstract argument structure is removed. This im-
pacts the grounded extension, by re-instating all of the Proponents arguments, meaning
that the proponent has successfully defended against the counter (Figure 18).

7.3. Second strategy of testing the proof: Countering a lemma

With Proponent having successfully defended against the first attack of the proof, Op-
ponent now makes a further attack. This time Opponent raises a counterexample to
one of the lemmas. Proponent accepts that this counter is valid and replaces the at-
tacked lemma with a revised version incorporating the counterexample. The updates
carried out in this section of the dialogue are summarised in Table 4 (As this section
follows on from the previous counter, the definitions introduced there remain a part
of the structure, but are omitted here as they have no impact on the remainder of the
dialogue.)
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(1-k) Prefer(M,,R,D,E)

Figure 18: The update made to the Argument Interchange Format structure and the argumentation framework
upon Proponent’s definition being preferred (1-k).

The second counter begins in (1-1), following the rules L2.1 and S16.3b (as this
counter follows directly from the previous Prefer move), the Opponent uses Local-
Counter to introduce the counterexample of a cube, explaining that, if a triangle is
removed from inside the triangular network produced by performing the first two steps
on this polyhedron, then no edges on vertices are removed (I;1 in the updated AIF
structure in Figure 19). This is in conflict (CAg and CAg) with the lemma, L3, one of
the premises of the abstract argument, ®, representing the proposed proof, and hence
 is no longer in the grounded extension (Figure 19).

Proponent

L JONOR

(1-1) LocalCounter(M,,L3)

Opponent

Figure 19: The update made to the Argument Interchange Format structure (on the left-hand side) and the
argumentation framework (on the right-hand side) upon Opponent’s counter of L3 (1-1).

In (1-m) the Proponent accepts the validity of the counterexample raised by the
Opponent, and revises the attacked lemma, L3, via LocalLemmalnc to take this into
account (a node MA represents the rephrase relation between the new lemma and the
old lemma). This new lemma, K or I;2 in the AIF structure, adapts L3 by insisting that
triangles may only be removed from the boundary of the network. At this stage in the
defence, o is still out of the grounded extension, and the only change is the addition of
K (Figure 20).

Having introduced the revised lemma, K, the Proponent now performs the Proof-
Done move to incorporate this new lemma into the proof structure. The result of this
move is to create a new rule of inference, RAg, between the current lemmas (L, L,, K)
and the conjecture (C), this produces a new abstract argument @/, which replaces w as
the current proof (Figure 21). The final grounded extension along with the text of each
argument, can be seen in Table 5.
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Proponent

L SCACR

Opponent

Figure 20: The update made to the Argument Interchange Format structure and the argumentation framework
upon Proponent’s introduction of a new lemma, K, replacing L3 (1-m).

(1-n) ProofDone() '
Proponent

OF JNONOR X0

Opponent

Figure 21: The update made to the Argument Interchange Format structure and the argumentation framework
upon Proponent’s creation of the revised proof (1-n).

8. Conclusions

In this paper we propose a way to narrow the gap between human and machine proof-
construction, in order to promote mainstream acceptance and use of automated theorem
provers by mathematicians. Philosophical, sociological and educational literature on
mathematics highlights the importance of presenting the development of a proof at-
tempt alongside a final, or currently accepted, proof artefact. We have developed an
argumentation-based framework in which this is possible. A grounded extension of
a dialogue can be produced, representing a currently accepted, collaboratively con-
structed, proof or theory. Since the record of the dialogue can be presented alongside
this proof, the framework delivers the history of a proof attempt as well as the proof
artefact. Similarly, social aspects in human mathematics have been shown to be in-
tegral to the human context. Technologies which are able to support mathematicians
in the collective construction of mathematical knowledge, in a variety of ways, such
as highlighting conflicting commitments or unresolved moves, finding similarities and
conflicts across different discussions going on in parallel among otherwise independent
groups of arguers, storing past discussions and making them searchable, and so on, are
essential.

Our work develops across three arcs — a theoretical model, an abstraction level and
a computational model — in order to take into account studies of human mathematical
reasoning. In particular, we have:

1. taken Lakatos’s informally specified technique for conducting dialogue in math-
ematics,

2. modeled it as a formal dialogue system,
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3. expressed this model in a domain specific language for dialogue game specifica-
tion, DGDL,

4. defined operational semantics for the specification in terms of updates to argu-
mentation structures expressed in a natural language dialogue for argumentation,
AIF,

5. induced abstract argumentation frameworks from AIF via the structured argu-
mentation system ASPIC™"

6. shown the consequences of AIF updates at the abstract layer

7. demonstrated how those abstract semantics yield a grounded extension that prov-
ably always corresponds to the theory that has been collaboratively created by
the dialogue participants

8. shown how the entire pipeline can be implemented and then skinned with the
Arvina interface (using TOAST, DungOMatic, AIFdb and DGEP)

9. and, finally, shown how an example of Lakatos’s informal logic of mathematical
discovery can be formalised.

This is the first time that formally specified and fully implemented argumentation
tools right through the abstraction hierarchy from natural language dialogue through
structured argumentation to instantiated abstract argumentation have been brought to-
gether and applied to a specific, demanding domain of human reasoning. The founda-
tion that has been laid here allows new explorations into mixed-initiative, collaborative
reasoning between human and software participants in interactions which are both nat-
uralistic but formally constrained and well-defined, with the potential to impact both
the pedagogy and the professional practice of mathematics.

We emphasise that no formal linguistic analysis or NLP has been incorporated into
the current effort. Such an effort must be reserved for future work, and it would play
a crucial role in an automated mathematical dialogue system. Contemporary strategies
from natural language processing, including the field of argument mining [73] have
gained traction within the broader field of discourse mining and could help inform
future NLP-based efforts in this direction. Progress has made in understanding the
language that mathematicians use [38, 28], integrating this with reasoning systems,
and generating human-like output [39].

Representation and reasoning are two important and intertwined branches of Al
Our paper has primarily focused on representation of reasoning. Moreover, this is not
reasoning by way of standard deductive logic that is often used in logical foundations of
mathematics, but is rather, per Lakatos, a closer approximation of the kind of reasoning
used in everyday mathematics. Appendix A illustrates that our system models, with
reasonable fidelity, the key processes that take place in mathematical dialogues leading
to proofs. This can also be taken as a proof-of-concept that implies that the theoretical
and technical achievements of the paper are on the right track.

Each of the major arcs mentioned in Section 1 could be continued in future work.
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e On the theory side, expanding the range of mathematical dialogues that can be
modeled would in some cases require moving beyond Lakatos’s informal logic,
e.g., to include problem solving and problem specification in the spirit of Pdlya
[76, 84].

e The abstraction layer could usefully be upgraded with a richer instantiation
layer: per [11], in contrast to abstract argumentation, instantiated argumenta-
tion makes “the internal structure and content of the arguments, the relationships
between the arguments in virtue of their content, and the application of argumen-
tation” available to reasoning. This would be relevant for modelling, e.g., the
lemmas or sequences of lemmas might be attacked in terms of their structure.
This work would go hand-in-hand with the introduction of Pélya-style planning
and heuristics.

e On the technical side, another major challenge for future work will be the design
of agents that can participate in Lakatosian reasoning. This has been piloted
in [70] (see [71] for a summary), but the formality and precision of the current
offering motivate a new approach to this challenge, and provide groundwork for
further advances. For example, following [78], it would be useful if interlocutors
were able to identify the relevant moves among the permitted ones.

The research described here presents a solid basis for such a programme of work,
because it represents the kind of reasoning that people actually use in practice. The
extent to which human reasoning will jibe with “human-oriented theorem proving”
systems (as used and surveyed briefly in [39]) remains to be seen. The inferential
construction of the grounded extension in our system automates some basic reason-
ing tasks. Extensions, restrictions, or other modifications to the Lakatosian model —
to represent richer or simply different forms of reasoning — along with corresponding
extensions to the backend are reasonable projects for follow-up work. For example, we
recently presented work with a limited Lakatosian framework for discussions about de-
sign artefacts [27]. More broadly, representing practical reasoning bears on several of
the challenges about which Al researchers had been initially optimistic [86]. The sys-
tems we work with make available inherently explicable patterns of reasoning, which
stands at a contrast to some of the impressive successes in the connectionist tradition.
Pragmatics are essential for realising Al that can work in dialogue with humans.

Our long term goal is to build a seamless interaction between automatic, semi-
automatic and manual processes in shaping the dynamics and the outcome of argumen-
tative interactions among multiple parties, possibly including both human users and
artificial agents. Here we have developed a new approach in which tools and theories
from the argumentation community can be deployed to build a bridge between interac-
tive proof tools and human mathematicians, thus helping to close the gap between the
two disparate styles of reasonings. We have focused on two key areas of human mathe-
matics: the importance of informal proof and presenting proof-development alongside
its final form, and an emphasis on social aspects, opening the door to a mixed-initiative
collaboration in mathematics. This will be a step towards our vision of a mathematics
social machine, in which mathematicians view software systems as valued collabora-
tors and respected fellow mathematicians.
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Table 3: First strategy of testing the proof: Countering the conjecture

Formalisation Representation [ Evaluation
LG System _[Dialogue Theory| AIF ASPICT | AF G [GELc
Opponent — Challenge 1
Is: For the hollow cube V - _
E+F=4[M] ZC _A/;{C;(eg—’C'L]»Z’ ARi = {Li,
(1-f) L I: It is not the case that for :R3’ _1’{ L, L3, 0, L
GlobalCounter Ly all polyhedra, V-E+F=2 LG = M} L,
(Ly,La,L3) = C,
(M] ,C) Ls [IIOI—C] M = not-C } attyg = { Ls
[L2.3, S4.1] M, CA;: (I, Ig) [(C, not-C)] _ ‘: {(C, not-C) (0, a), M,
CA;: (I, 1)) [(not-C, O)] (not-C C)} ’ (o, )}
RA;: (s, Ig) [(M), not-C)] ’
Proponent — Defence 1
K ={C, L, L,,
L L3, My, not-C, R} ARG = {Ll, L
(1-g) L, e o Rig={ Ly, L3, o, L,
MonsterBar Ly Iy: This pair of nested cubes | /'y /'y My, a,R} Ly
is not a polyhedron [R]
(M;,C,R) M, CA;: (I, RA,) [(R, RA)] M, énot-C} llltLG={ M,
[L5.1, S5.3] R 3.7 BA2J I B2 ~={(C, not-C), (0, a), (o, ®), | R
Ly,Lp,L3s0C (not-C, C), (R, o) } [0]
(M) = not-C, R)}
K ={C, L, Ly,
L L3, My, not-C, R, D L
I Rig = {no bk =1L, I
(1-h) 2 Is: A polyhedron is a sur- Lo = Ly, L3, o, M, 2
. Ls L (Ly,Ls,L3) = C, Ly
PDefinition face consisting of a system o,8,D}
M, M, = not-C, M,
(M, ,R,D) DsoR of polygons [D] D=R} attyg =4 S
[L5.3, S10] RA;: (Is, Ir) [(D, B)] - (0, o), (a, ®),
D ={(C, not-C), 5.} D
Ly,L,,L3s0C (not-C, C), ’ [0)
(M) = not-C, R)}
Opponent — Challenge 2
K ={C, L, Ly, L3, _
My, not-C, R, D, S} ARG = {L1,
. Ly, L3, o, M,
Io: My counterexample is a | Ryg ={ @, 8.D.5.0}

. L, solid bounded by polygonal | (L;,L,,L3) = C, T L
(1-i) attg =4
MonsterReiect L, faces [S] M, = not-C, (@, @) L,
ot R.D.5.O) Ls CAj: (19, 17) [(S. R)] D=R. Py Ly
L2, S122] M, CAs: (17, 1o) [(R, S)] .9 =noC} | O M,

’ D RA;: ({Is.h}, Ts) [({My, |~ ={(C, not-C), (5’ S), D
S}, not-C)] (not-C, C), (S, 8)’
(M, = not-C, R), (5’ G)’}
(S, R), (R, $)} ’
K={C,Li,L>,Ls, |ARic={Li,
My, not-C,R, D, S, E} | Ly, L3, 0, M,
Ric ={ a,68,D,0,
Iio: A polyhedron is a solid [(é] Aa.La) = C, Ee }_
. . . | = not-C, artp g = {
(1-)) L whose surface consists of Ly
. D =R, (0, @),
ODefinition L, polygonal faces [E] (M,.8) = not-C (a, ®) L,
(My,R,D,S,E) Ly CAs: (Lo, Is) [(E, D)] E—L;S} ’ (6’05)’ Ly
[L5.4,S14] M, CA7: (Is, Lio) [(D, E)] - N M,
RAs: (o, To) [(E, S)] ={(C, not-C), (D, E),
30 IR (not-C, ), (E,D),
(M; = not-C, R), (6, ¢),
(S, R), (R, ), (¢, 0),
(E, D), (D, E)} (8,0)}
Opponent — Concede Definition
K={C,L,Lp, L3, |ARiG={L1,
My,not-C,R, D, S,E} | Ly, L3, ®, My,
Reg={ a,6,D, o, L
Ly (Li.Ly.L3) = C. E.e} o
(1-k) L, M, = not-C, attyg = { L2
Prefer Ly ) D =R, (0, @), 3
(M).R.D.E) My Pz (s, Lo [(D- £)] M.9) = notC. | (o @), M
[L2.3, S4.1] DsoR E=S} 8, a), s
Ly,Ly,L3 soC ~ ={(C, not-C), (D, E), P
54 (not-C, C), (4. e,
(M; = not-C, R), (g, 0),
(S, R), (R, S),(E,D) } | (6,0) }




Table 4: Second strategy of testing the proof: Countering a lemma

Formalisation Representation [ Evaluation
LG System__[Dialogue Theory| AIF [ ASPICT [ AFg [GELG
Opponent — Attack
I;;:  Take the triangular
network which results from
performing the first two op- - _
erations on a cube. Now K={C.Li.L, |ARiG={L1,
. . Ly, My} L, L3, @,

(1-1) if I remove a triangle from Rig = { M}

LocalCounter L the inside of this network, as (LLOL_ I)=C tlz ={ L

(M>,L3) L, one might take a piece of the 152,53 ?MLG c;) L,

[L2.1, S16.3b] jigsaw puzzle, I remove one | 2 2> 0

: : : ={(Ls,M), (M, L),
triangle without removing a (My.Ly)} Ly, M2)}
single edge or vertex [M>] 23 3.2
CAsg: (Is, Inn) [(L3, Ma)]
CAy: (111, 1y) [(Ma, L3)]
Proponent — Defence
I;2: if we drop the boundary
triangles one by one from a | K ={C,Li,L,, |AR;;={Li,
(1-m) triangulated map, there are | L3,M>,K} L, L3, o,
LocalLemmalne L, only two alternatives — the | Rpg = { M, K} L,
L, disappearance of one edge | (Li,L»,L3) = C |attig={ L,
(M3, L3, K) K or else of two ed d (M, @) K
[L4.1, S6.1] Wo edges anda | 2, @),
’ vertex [K] = {(L3.M>), (M, L3),
MA;: (LI}, i) | (MaL3)} (L3, My)}
[({L3. M2}, K)]
K ={C,Li,Ls, [AR={Li,
L Ly, M>, K} Ly, L3, o, L

(1-n) A Rig= { M, K, U)/}

ProofDone() LK2 ?1{&2 I Iéfz(}lﬁ’llﬂ’ Ry (L1,Lp,L3) = C, |attyg={ LKZ

[L1.3,S19] Lo K s0C PR (Li,L2.K) = C } | (M, ), o

o T={Ts), | O, Ly),
(Ma,L3)} (L3, Mp)}
Argument | Text

Ly Any polyhedron, after having a face removed, can be stretched flat on
the blackboard

Ly in triangulating a map, one will always get a new face for any new
edge

M, for the hollow cube V-E+F=4

D A polyhedron is a surface consisting of a system of polygons

15} [D so This pair of nested cubes is not a polyhedron at all]

K if we drop the boundary triangles one by one from a triangulated map,
there are only two alternatives - the disappearance of one edge or else
of two edges and a vertex

0); [{L1, L, K} so for all polyhedra, V-E+F=2]

Table 5: The final grounded extension at the end of the example dialogue
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Appendix

A. Lakatos in the wild

While acknowledging Lakatos’s contribution to the field, fellow philosophers of math-
ematical practice have criticised him for over-reliance on a few case studies, historical
inaccuracy and narrowness of application of his theory [5, 4, 6]. This provides an impe-
tus for a wider search for empirical examples. Here, we illustrate the feasibilty of using
our formalisation of Lakatosian informal mathematics to model a real-world example
of mathematical dialogue.

Until recently, naturalistic observation of mathematical discussions would typically
only be possible for the direct participants in those discussions. Archives of online
discussions make most of the same information that participants share available to re-
searchers [11]. Such discussions are very different from the more formal presentations
typical of research papers, which present polished proofs but lack transparency about
how those proofs were obtained [7, 12].

In 2009, Timothy Gowers initiated the Polymath series of experiments in online
collaborative mathematics, in which problems are posted online, and an open invita-
tion issued for people to try to solve them collaboratively, documenting every step of
the ensuing discussion [3]. The result is an unusual example of a public record of sev-
eral episodes of mathematical activity that lead to a proof. Martin and Pease [8, 10]
discuss the implications of such crowdsourced mathematical activity for the production
of mathematics, and describe their preliminary investigations of the community ques-
tion answering system MathOverflow [1], and the Polymath collaborations [3]. They
furthermore present an analysis of one such project for students [2] and describe as-
pects of it which follow the conversational patterns which Lakatos identified. We build
on this work below.

The problem in [2], taken from the International Mathematical Olympiad, asks
about a certain geometrical construction involving lines rotating around a set of points
in the plane; it refers to an example from this class as a “windmill process.”'® Be-
tween the problem proposal and Terrence Tao’s certification of the answer in thread
27, approximately seventy four minutes passed [10].

The following set of hand-selected excerpts are hand-coded using the formalism
introduced in Section 3 to show explicitly how Lakatosian reasoning contributes to the
core steps in the development of the proof. Sometimes near-repetitions appear, when
two or more comments are posted simultaneously (we mark these as “Repetition of
previous move” below); similarly, we expand some simple statements sometimes into
a sequence of several moves in the Lakatos Game. With these clarifications in mind, the

18<Let S be a finite set of at least two points in the plane. Assume that no three points of S are collinear. A
windmill is a process that starts with a line ¢ going through a single point P € S. The line rotates clockwise
about the pivot P until the first time that the line meets some other point Q belonging to S. This point Q
takes over as the new pivot, and the line now rotates clockwise about Q, until it next meets a point of S. This
process continues indefinitely. Show that we can choose a point P in S and a line ¢ going through P such that
the resulting windmill uses each point of S as a pivot infinitely many times.” [2]
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following excerpts trace the highlights of the proof, and their corresponding mapping
into the dialogue system introduced in Section 3.

A.1. Thread 3: What is a line?

At the beginning of this thread early on in the discussion, ANONYMOUS decides to
simplify things, moving from the running Conjecture(‘problem statement holds’) to
a related game dealing with a similar conjecture in the safe domain of convex poly-
gons. The discussants readily agree that the proposed Conjecture(‘statement holds in
the convex polygon case’) is true. Variations on this case are then considered as po-
tential counterexamples to the original conjecture. These are rejected after the basic
concepts in the problem statement have been clarified.

1: ANONYMOUS: If the points form a convex poly-
gon, it is easy.

a. P: Conjecture(‘statement holds in the convex
polygon case’). [LL1,S1, CL1]
b. P: Lemma(‘a windmill process walks around
the vertices of the convex polygon’ L3 1)

[L1.2, S2.2, C2.1]

c. P: ProofDone. [L1.3,83.2]

2: THOMAS H: Yes. Can we do it if there is a single
point not on the convex hull of the points?

d. P: Conjecture(‘statement holds in the convex
polygon plus point case’). [L1.1, S1, C1.1]

3: JERZY: Say there are four points: an equilateral tri-
angle, and then one point in the center of the triangle.
No three points are collinear. It seems to me that the
windmill can not use the center point more than once!
As soon as it hits one of the corner points, it will cycle
indefinitely through the corners and never return to the
center point. I must be missing something here. ..

e. O: GlobalCounter(‘equilateral triangle plus
point’, ‘statement holds in the convex polygon

case’). [L2.3, S4.1]

4: JOE: This isn’t true - it will alternate between the
centre and each vertex of the triangle.

f. P:  MonsterBar(‘equilateral triangle plus
point’, ‘statement holds in the convex polygon
case’, ‘line is alternating’). [L5.1, S5.3]

5: THOMAS H: No, you’re not right. Let the corner
points be A, B, C, clockwise, M the center. If you
start in M, you first hit say A, then C, then M, then B,
then A.

g. P PDefinition(‘equilateral triangle plus
point’, ‘line is alternating’, ‘“line” extends in
both directions’). [L5.3, S10]

6: JERZY: Ohhh...I misunderstood the problem. I
saw it as a half-line extending out from the last point,
in which case you would get stuck on the convex hull.
But apparently it means a full line, so that the next
point can be “behind” the previous point. Got it.

h. O: MonsterAccept(‘equilateral triangle plus
point’, ‘line is alternating’). [L6.1, S12.1]
.1, .

65



A.2. Thread 11: Hitting all the points

In this thread, ANONYMOUS offers a potential characterisation of generality. We
again retain Conjecture(‘problem statement holds’), and ANONYMOUS first proposes
Lemma(‘we can start with any point’). This is refined into the claim Lemma( ‘the line
does not matter ). However, counterexamples to this claim are produced, and ANONY-
MOUS must refine the claim again.

7: ANONYMOUS: One can start with any point (since  a. P: Lemma(‘we can start with any point’ Ly 1).
every point of § should be pivot infinitely often), the [L1.2,S2.2, C2.1]
direction of line that one starts with however matters! ’ ’

8: NEMANIJA: In other words, we can start with any  [Repetition of previous move.]
point and ‘just’ need to choose a second point through
which will we draw a line.

9: ANONYMOUS: Perhaps even the line does not mat-  b. P: Lemma( ‘the line does not matter‘ Ly 2).

ter! Is it possible to prove that any point and any line [L1.2,S3.1, C2.1]

will do? c. P: ProofDone. [L1.3, S3.2]
.3, S3.

10: THOMAS H: No, if you start with two points on  d. O: LocalCounter(‘two points on the convex
the convex hull (ordered in the right way) you stay on  hull’, L1 3) [L2.1, S4.2]
the convex hull. ’

11: NEMANIJA: It is not possible, two consecutive  [Repetition of previous move.]
points on convex hull will not do.

12: ZHECKA: Sure a choice of line is important.  [Repetition of previous move.]
Imagine S is a set of vertices of a convex polygon P
(triangle, say) plus one point inside P.

13: ANONYMOUS: Only the starting point matters.  e. P: LocalLemmalnc(‘two points on the convex
By the problem statement, it appears that the initial — hull’, Ly 2, ‘the initial angle is irrelevant within
angle is irrelevant to the existence of a pivot point P*  a specific range’). [L4.1, S6.1, C2.2]
from which all of S is traversed. Every pointin S is a

pivot point, but only with a specific range of starting

angle (e.g. those consistent with the cycle generating

S). The union of these intervals must necessarily be

[0,27), and thus we can assume WLOG that the start-

ing angle is O (and thus we single out a specific point

— or points in the case of |S| = 2).

A.3. Thread 14 (first part): Splitting in two sets, conclusion

This thread, which contains the final solution to the problem, begins with ANONY-
MOUS advancing Lemma(‘we can separate the points in two parts of roughly equal
size’). This draws some initial interest, but the discussants aren’t sure how it will be
useful. A considerable amount of time passes before GARF is able to make something
more concrete from the earlier remarks, in the form of a sequence of lemmas that,
he claims, secure the desired result. GARF’S chain of reasoning will be certified as
a solution to the problem only after they have been thoroughly vetted. Further minor
criticisms and a recap of the solution are elided here.
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14: ANONYMOUS: I’m not sure but as no three points
are collinear, one can always find a line which splits
the points into two sets whose number of elements dif-
fer at most one?

a. P: Lemma(‘we can separate the points in two
parts of roughly equal size’ Li4.1).

[L1.2, S6.1, C2.1]

15: THOMAS H: That is surely true. How could this
help us?

[Not coded.]

16: ANONYMOUS: Something like one can find this
no matter how we choose the first point. Then in some
time the windmill must be parallel to the line through
these points. This line must be unique or else it splits
the points such that number of elements differ at least
two.

[Not coded.]

17: JUSTIN W SMITH: It appears that the number of
points to the “left” or “right” of the line is constant
through the entire process!

[Not coded.]

18: GARF: I think this solves the problem. Start
with a line which separates the points into two parts of
roughly same size (their cardinal differ by at most one,
not counting the point to which the line is attached).
Then run the process until the line is “upside-down”,
and so has turn by exactly w. Every point has gone
from the right of the line to the left of the line (easy to
see is the number of point is odd, you have to be a bit
more crafty if it is even), and no point can go from left
to right or right to left without touching the line. Add
the previous remarks (the process will always come
back to its initial configuration), and every point will
be visited infinitely often.

b. P: Lemma(‘we can run the process until the
line is upside down’ L4 7). [L1.2,S2.2, C2.1]

c. P: Lemma(‘every point goes from right to left’
Li43)- [L1.2,83.1, C2.1]

d. P: Lemma(‘no point can go from left to right

without touching the line’ Li4.4).
[L1.2, S3.1, C2.1]

e. P: Lemma( ‘the process will return to its initial
configuration’ L4 5). [L1.2, 3.1, C2.1]

f. P: Lemma(‘each point will be visited infinitely
often’ Lia6)- [L1.2,83.1, C2.1]

g. P: ProofDone. [L1.3,83.2]

19: GAL: Very nice! Don’t we run into problems
with a convex hull though? Take a square with a point
in the middle (M) and pass the diagonal of the square
(not through M) — it seems to me M is never visited
(though I may be wrong here). I think we should be
more specific in our initial choice of line, maybe?

h. O: HybridCounter(‘point inside square’,
‘problem statement holds’, Li4.¢).

[L2.2, S4.3]

20: GAL: No. This example is false :)

i. P:  HybridLemmalnc(‘point inside square’,
Lise)- [L4.2, §7.1, C2.3]
j. P: Conjecture(‘problem statement holds, even
for point inside square’).

[L4.2, 518, C1.1]

k. P: ProofDone. [L1.3, S2.1a]

21: ZHECKA: Yes, it seems to be a correct solution!

[Repetition of previous moves.]
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22: GAL: This seems to be right, but there something 1. O: LocalCounter(‘M is never visited’, Ly4.4).
I don’t understand. Please see if you can help me with [L2.1,54.2]
it: Start with a square and a point inside it (M): start B
with a tangent to the square (your solution demands a
more equal division of points, I know). When we get
to the opposite vertex of the square all points moved
from one side of the line to the other, but not all points
have been visited (M will never be visited). The argu-
ment is almost exactly the same, so it seems that the
equal division of points plays a crucial role, but I don’t
understand what role exactly. Can we pin it down pre-
cisely?

23: GARF: If I understand well your example: the m. P: LocalLemmalnc(‘M is never visited’,
problem is that you must give an orientation to the line. L4 4, ‘left and right must be reversed after a ro-
Then, left and right are defined with respect to this  tation’).
orientation: if the line has made half a turn, then left

and right are reversed. In your example, I think most

of the points move from, say, the part at the top of the

line to the part at the bottom of the line, but always

stay at the right of the line.

[L4.1, S6.1, C2.2]

GAL: Got it! Kind of like a turn number in topology.  [Not coded.]
Thanks! :)

These examples show that Lakatos-style reasoning can be used to describe real
world examples of mathematical conversations. It is also clear that there are reasoning
steps involved that are not classically Lakatosian, for instance surrounding the clarifica-
tion of terminology rather than concepts (in Thread 3 (g-h)). The relationship between
the overall game and a sub-game like the one in Thread 3 (a-c) is not formally specified
in our protocol, although it would not be difficult to do so [9]. In some cases, a more
detailed analysis might yield further insights into the discussants’ thought process. For
example, consider Turns 14-17 in Thread 14, which comprise a more complex ex-
change than would be needed if the only goal was to introduce a lemma. Nevertheless,
the overall structure of the discussion is coherent with the Lakatosian framework.
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